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Abstract

I consider a model in which a first-price auction sells one object at a time and repeats.
During this repetition, only the winner and the winning bid are announced after each auc-
tion. A bidder uses this announcement to adjust his bidding strategies in order to win
multiple objects across the repeated auctions. I narrow the repetition down to a two-period,
so that I can nonparametrically identify a bidder’s strategy and the complementarity be-
tween objects that motivates him to acquire multiple objects. I apply this model to the
Korean Fruit Auction and suggest using an alternative auction design, the Product-Mix
Auction. This design finds a uniform price for each variety, so farmers need not worry that
their produce might be sold at the trough of the oscillatory winning bids inherent in the
current auction design. Moreover, the alternative design mitigates the bid shading typical
of uniform-price auctions, thereby protecting farmers’ interests; as a result, the outcome of
the design aligns with the government’s objectives.
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1 Introduction

An auction is used when someone doubts market sentiments but must transact in large volume:
well-known transactions include spectrum, timber rights, rough diamonds, highway paving con-
tracts, and treasury bills1.

Because of its large volume and bidders’ demanding more than one unit2, the stakes are
high and the Revenue Equivalence Theorem fails3, requiring the auctioneer to make decisions
on the auction designs4. One of these decisions involves the extent of information disclosure
between auctions, and papers (Bergemann and Hörner (2018) and Dufwenberg and Gneezy
(2013)) suggest that revealing less information about the outcome of the previous auction to
the bidders benefits the auctioneer.

Complementarity between objects also influences the auctioneer’s decision in selecting the
auction design. When objects are complements, the whole is worth more than the sum of its
parts. Thus, in 2013, when the United Kingdom sold complementary spectrums, they selected
a design that allowed a bidder to form packages (a combinatorial clock auction) rather than a
design that did not (a simultaneous multiple round auction)5.

The questions this paper tries to address are: (i) Under a model where the auctioneer sells
multiple objects one at a time and discloses only the winning bids and the winner’s identities,
can the analyst separate complementarity and correlation across objects from the dataset?
(ii) Given this separation, do the nonparametric estimators based on this model successfully
estimate both the parameters of interest and also the bidders’ bidding strategies? (iii) Can I
use the model and its estimators to develop policy recommendations?

I answer these questions under the paradigm of Independent Private Value, focusing on
first-price sealed-bid auctions. Each question is important, as answering the first question
relates to distinguishing between structural state dependence and the persistent heterogeneity
(Heckman (1981)), which is crucial for policy evaluation. Answering the second question also
enhances the policy evaluation because the nonparametric estimator makes less assumptions on

1For spectrum, Myers (2023) elaborates on combinatorial clock auction and simultaneous multiple round
auction used in Ofcom, UK. For other products, notable or recent papers are: timber rights for Athey et al.
(2011); rough diamonds for Cramton et al. (2013); highway paving contracts for Jofre-Bonet and Pesendorfer
(2003), Gentry et al. (2023), Silva and Rosa (2023), Kim (2024); treasury bills for Hortaçsu and McAdams (2010).

2Bidders’ demanding only a single unit(known as unit demand) has been the main focus of theoretical
literature. Milgrom and Weber (1982) incorporates the concept of affiliated values and ranks auction designs,
Mcafee and Vincent (1993) explains the declining price in a repeated auction using risk-averse preference, Maskin
and Riley (2000b) and Maskin and Riley (2003) focus on first-price sealed-bid and state condition for the existence
of monotonic equilibrium strategy and condition for the unique equilibrium. These four papers are only a few
among the voluminous notable papers, and chapters 1-11 of Krishna (2010a) introduce results from these notable
theoretical papers. A recent empirical paper, Backus and Lewis (2024), discusses dynamic demand estimation
under a unit demand assumption.

3The Revenue Equivalence Theorem assumes that a bidder desires only a single unit (Klemperer (2000)),
which is why Ausubel et al. (2014) argues that the theorem is inapplicable when a bidder desires more than one
unit. The inapplicability of the theorem in practice is detailed in Klemperer (2013b).

4Examples of auction designs can be found in Vulkan et al. (2013)(chapters 3, 10, 11, 12, 15, and 16),
Hendricks and Porter (2007), Hortaçsu and Perrigne (2021), and Kaplan and Zamir (2015).

5Refer to Myers (2023). CCA(Combinatorial Clock Auction) was used in 2013 because the licenses that were
auctioned were high-frequency(known as coverage spectrum) and low-frequency(known as capacity spectrum),
which are complements. Figure A1.1 shows that 2013’s CCA was not the first auction that used CCA and
replaced SMRA(Simultaneous Multiple Round Auction); but, as page 228 denotes, the first two auctions(2007
and 2008) that used CCA were lower-stakes auctions prepared for the 2013’s high-stakes auctions.
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the parameters of the interest. Moreover, one could use the estimator to verify whether bidders
engage in monotone strategies, thereby ensuring that the bidder who values the object most is
awarded the object. Lastly, answering the last question demonstrates the policy implications of
this paper.

I consider a two-period Perfect Bayesian Nash Equilibrium6 model in Section 2 where the
values of the first and second objects are correlated. Additionally, to separately account for
correlation and complementarity, my model uses a function that takes as inputs the values of
the first and second objects, and outputs an adjusted value for the second object that incorpo-
rates the complementarity effect of holding the first object. Under this function, bidders with
different values for the objects experience different degrees of complementarity. This advances
the structure of recent papers, where two bidders with different values for the objects experience
the same degree of complementarity across those objects7.

The bidder in my model wants both objects, leading the first auction losers and the first
auction winner to compete in the second auction, creating an asymmetric auction8. Under this
setting, I find that even with a dataset containing only the winning bids and the winner’s iden-
tity, the analyst can nonparametrically identify the complementarity and correlation between
objects, as demonstrated in Section 3. Moreover, the same section also demonstrates that the
analyst can identify from the dataset the bidder’s bidding strategy in the first auction, as well
as his strategy in the second auction, depending on whether he won or lost the first auction.
These demonstrations show that the indirect approach of Guerre et al. (2000), in which the bid
distribution is first identified and the parameters of interest are subsequently identified, can be
extended to a multi-period setting where bidders have multi-unit demand―an extension that
has not yet been explored in the literature9. Given that this indirect approach is extensively
used in real-world applications (see Hortaçsu and McAdams (2018)), my paper contributes to
addressing real-world problems.

Building on the identification results in Section 3, I propose a multi-step estimator in Section
4 for these identified estimands and demonstrate, via Monte Carlo simulations, that the median
estimates of the estimator are consistent with the true estimands. Policymakers may use the
estimator to verify whether the bidders engage in a monotone bidding strategy or to assess the
degree of complementarity between objects.

6Another concept used in empirical auction papers is Markov Perfect Equilibrium, as seen in notable or recent
works such has Jofre-Bonet and Pesendorfer (2003), Altmann (2024b), and Kim (2024). Asker et al. (2020)
also considers an infinite horizon game, but uses the new concept of Restricted Experience-Based Equilibrium;
Aguirregabiria et al. (2021) in its chapter 4.1.3 introduces dynamic models used in empirical auction.

7For example, complementarity across objects, which are considered in the following papers, varies by auction-
specific covariates not by a bidder’s value for the objects: Arsenault-Morin et al. (2022) uses a function KA

i for
roof-maintenance contracts, Gentry et al. (2023) uses a function κi for highway procurement auctions, and
Altmann (2024a) use a combinatorial pay-off function k for Feeding America’s allocation mechanism. Another
notable paper is Donna and Espín-Sánchez (2018) that estimates a complementarity parameter ρ in water auction.
But, the estimated ρ and a bidder’s value are linearly multiplied, which I do not assume.

8Maskin and Riley (2000a) also considers an asymmetric auction, but its focus is on a single period auc-
tion(known as a static auction).

9Kong (2021) also considers a two-period auction and discusses identification and estimation of the parame-
ters, but it is a first-price auction followed by an English auction. For repeated first-price auctions, a well known
paper is Milgrom and Weber (1999), which assumes a bidder with a unit demand; recent papers such as Kannan
(2012), Bergemann and Hörner (2018), and Azacis (2020) assume a bidder with multi-unit demand and discuss
the effect of changing disclosure policy, but they do not discuss identification or estimation strategies.
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Section 5 shows the results of applying my model and its estimators to the Agricultural
Produce Auction at Garak Market. Twenty-seven percent10 of all vegetables and fruits in Korea
are transferred from farmers to wholesalers through this auction, indicating that the stakes are
high―to my knowledge, no paper has conducted a structural analysis of this auction.

Among the vegetables and fruits, I focus on apple auctions, as apples are one of top five fruits
traded at Garak Market. By applying my model and its estimators to the last two auctions
of each auction house at the Market, I estimate the substitutability between the second-last
and last apples. This implies that a bidder who won the second-last auction becomes a weak
type, while a bidder who lost becomes a strong type in the last auction. I estimate the bidding
strategies of each type and find that each follows a monotone bidding strategy in the last auction,
with the strong type shading more than the weak type; this differential shading aligns with the
predictions of Maskin and Riley (2000a).

Given the high stakes of this auction, various principles govern the auction. One such
principle is Article 123 (4) of Constitution of The Republic of Korea, which mandates that
the government protect the interest of farmers. Based on this article, the government has
standardized the quality of agricultural products to ensure that each farmer receives higher
winning bids in the auction. However, even with the assumption that the same product (e.g.,
high-quality Large Fuji apples) from different farmers is well standardized, selling them one by
one would lead to oscillatory winning bids on any given day, as predict by papers suggesting a
martingale path11. This would disadvantage farmers whose produce happens to be auctioned
at the trough of that oscillation, which runs counter to the government’s goal of protecting
farmers’ interests.

Under the assumption that the same product from different farmers is well standardized, I
propose using an alternative auction design: the Product-Mix Auction, as used by the Bank of
England. Since this design is based on uniform-price auction, there is only one winning bid for
the same product, ensuring that all farmers of that product receive the same price. In this way,
a farmer selling his produce need not worry about his fruit being sold at the trough, as happens
in the current sequential auction.

However, a uniform-price auction is typically subject to bid shading (Ausubel et al. (2014)
and Kaplan and Zamir (2015)), which may cause farmers to worry about receiving a lower
winning bid. To mitigate this bid shading, the Product-Mix Auction (i) first selects non-
complementary products (e.g., high-quality Large Fuji apples and high-quality Medium Fuji
apples) and declares the total quantities to be sold, (ii) then allows bidders to submit their
demand schedules, which the auctioneer uses to construct a demand curve expressed in terms of
the quantity ratio and price ratio of the two products, and (iii) enables the auctioneer to choose
the quantity ratio to determine the competitive equilibrium price for each product. Under this
design, a bidder shades his bid less because bid shading for one product is less likely to drive
down the winning bid of that product compared to a traditional uniform-price auction. To
demonstrate how the Product-Mix Auction works, I select one day from one of the auction

10Thirty-three public wholesale markets account for 99.4% of the trade volume of vegetables and fruits in
Korea. Garak Market, one of these thirty-three public wholesale markets, accounts for 34.5% of this trade
volume, with auctions making up 79.6% of this volume. Multiplying these numbers yields twenty-seven percent.

11See Krishna (2010b) and Milgrom and Weber (1999).
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houses and use my model and estimator to illustrate the demand curve and the equilibrium
prices of the products.

2 Model

The auctioneer uses a first-price sealed-bid auction, selling one object at a time12. After the
first auction, only the winning bids and the winner’s identity are disclosed13, consistent with
the disclosure policy practiced in Agricultural Produce Auction at Garak Market.

There are I risk-neutral bidders attending the auction. I assume that bidders in the first
auction also bid in the second auction because (i) the value of the second object is positive, with
no bid preparation cost assumed, and (ii) the first auction winner desires the second object, as
my model assumes a multi-unit demand.

The value a bidder derives in apple auction (hereafter, Korean Fruit Auction) mostly comes
from delivering them at an agreed-upon price to his customers. Each bidder’s customer base
differs, and bidders vary in expertise, consistent with the Independent Private Value paradigm14

―to incorporate the effect of observable characteristics into a bidder’s value, I use bid homog-
enization, which I will describe in detail in the Application section.

Each v1 and v2 represents the standalone value a bidder derives from the first and second
objects, assuming he possesses only one of the two. If the objects are either complements or
substitutes, the utility of having both should differ from the simple sum v1 + v2. I express this
utility of having both as v1 + δ(v1, v2), and one can interpret it as winning the v1-valued first
object modifying the value of the second object from v2 to a δ(v1, v2).

Whether this modification moves upward or downward depends on whether both objects
show complementarity or substitutability. In each case, we observe δ(v1, v2) > v2 or δ(v1, v2) <
v2, indicating that the function δ is flexible enough to account for both directions. The assump-
tion I impose on this flexible function δ is that it must be increasing in its second argument,
v2. This imposition reflects the idea that if the second object becomes more valuable, a bidder
who already owns the first object also finds the second object more valuable, which aligns with
common sense; from now on, the term ‘increase’ refers to ‘strictly increase’, and the same applies
to ‘monotone.’

The reason I impose that the function δ is monotone in v2 is because it is necessary for
nonparametric identification. Nonparametric identification of an unknown function, such as
the function δ in my case and the function m in Matzkin (2003)’s, often requires monotonicity
in unobserved heterogeneity — v2 in my case and ϵ in Matzkin’s. Imposing monotonicity on
the function δ meets this requirement, which is also why I impose monotonicity on a bidder’s
strategy, as the strategy must also be nonparametrically identified.

Imposing monotonicity on a bidder’s strategy means that a bidder places a higher bid when
he values the object more; if the object is the first auctioned object, this implies that his bid

12For repeated first-price auctions selling multiple objects per period, see Altmann (2024a) and Altmann
(2024b).

13For cases where only the winner’s identity is disclosed, see Choi (2024).
14As discussed in Perrigne and Vuong (2023), the Independent Private Value (IPV) model is the most com-

monly used framework in the empirical auction literature. A.9 discusses why the IPV model has gained popularity
compared to other models.
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in the first auction is monotone with respect to his v1. This monotonicity makes sense if the
bidder knows his v1 but never his v2 during the first auction: if he knew that both of his v1

and v2 were high, and given that the first auction’s winning bid is disclosed, he might submit
a low bid in the first auction to appear weak, manipulating others’ belief about him, and win
the second object at a lower price. This manipulative bidding often results in two bidders with
different v1s placing the same first auction bid, making the identification of the bidding strategy
challenging15.

To circumvent this challenge, the value of the second object remains a random variable V2

during the first auction. Only after the first auction concludes is this randomness realized as v2,
drawn from the distribution F2|1(·|v1), implying that values of the first and second objects are
dependent. This dependence assumption is reasonable because in most real-world applications,
objects auctioned sequentially are correlated16.

As the random variable and its distribution have been discussed, I specify what symmetry
means in my model:

(Symmetry) Every bidder is subject to the same parameters: F1(·), F2|1(·|·), and δ(·, ·).
Each parameter represents Pr[V1 ≤ ·], Pr[V2 ≤ ·|V1 = ·], and the function that takes
v1 and v2 as arguments and outputs the adjusted value of v2 from owning the v1-valued
object.

Symmetry shows how V1s and V2s are distributed across I bidders, and independence describes
how these random variables are assumed to affect each other.

(Independence) Under the same distribution F1, each I bidder independently draws his
value of the first object, V1. Based on the drawn v1, each bidder independently draws his
value of the second object V2 from the conditional distribution F2|1, whose condition is
set at V1 = v1.

Suppose a bidder values the first object at 10, i.e., v1 = 10. If his values for the first and second
objects are highly correlated, then F2|1 predicts that his value for the second object will realize
near 10. If this realization is v2 = 13, then this value of 13 adjusts to δ(10, 13) if the bidder
owns the first object, but remains as 13 otherwise. The adjustment by the function δ represents
the causal effect of owning the first object, while the correlation between the objects is captured
by F2|1.

2.1 Equilibrium Strategies

Consider a situation where bidder i competes against I − 1 other bidders, who place Bayesian
Nash equilibrium bids denoted by {(b2j , b1j)j ̸=i}. In response to these equilibrium bids, bidder
i maximizes his expected profit by submitting tilde bids (b̃2i, b̃1i). At the end of Section 2, I

15This manipulative bidding can be understood as the ratchet effect; see Laffont and Tirole (1988). The
phenomenon where bidders with different values place the same bid is known as pooling equilibria. Kong (2021),
in her online appendix A.2.3, notes that the monotonicity of bidding strategies is crucial for structural analysis.

16This setup is the same as Kong (2021) and traces back to chapter 8 of Ortega-Reichert (1968); see A.10.
Notable examples that justify the dependence between auctioned objects include wine auctions discussed in
Ashenfelter (1989) and the transponder leases at Sotheby’s in 1981 discussed in Milgrom and Weber (1999).
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impose that bidder i’s tilde bids are indeed Bayesian Nash equilibrium bids. Theorem 1 then
specifies the testable restrictions that justify this imposition.

I begin with the second auction because I use the Perfect Bayesian Nash Equilibrium concept;
details and proofs are included in the Appendix A.

2.1.1 Expected Profit Functions in the Second Auction

If bidder i wins the first auction, he acquires the first object, valued at v1i. From the acquisition
of the first object, his value for the second object changes from v2i to δ(v1i, v2i). To get the
second object, now valued at δ(v1i, v2i), he chooses the optimal bid b̃2i that maximizes the
following expected profit function:

(
δ(v1i, v2i)− b̃2i

)
Pr[Bmax

2,−i ≤ b̃2i | Bmax
1,−i ≤ b̃1i, V1i = v1i, V2i = v2i], (1)

in which the random variableBmax
2,−i (Bmax

1,−i) represents the highest bid in the second (first) auction
from the I − 1 competitors, against which bidder i is bidding. The condition {Bmax

1,−i ≤ b̃1i}
inside the probability reflects bidder i is uncertain about other bidders’ first auction bids. This
uncertainty arises because the auctioneer does not disclose the losing bids from the first auction.

What the auctioneer discloses are the winning bid and the identity of the winner from the
first auction. If bidder i loses and observes that the winning bid is bw1 and the winner is bidder
j, then bidder i has the following expected profit function:

(
v2i − b̃2i

)
Pr[Bmax

2,−i ≤ b̃2i|B1j = bw1 , B1j ≥ B1k, k /∈ {i, j}, B1j ≥ b̃1i, V1i = v1i, V2i = v2i]. (2)

The condition {B1j = bw1 , B1j ≥ B1k, k /∈ {i, j}, B1j ≥ b̃1i} inside the probability expresses
what bidder i knows after losing the first auction. Since he loses the first auction, he values the
second object at v2i instead of δ(v1i, v2i) because he does not own the first object.

I introduce alternative expressions for both profit functions, (1) and (2).
A.1 shows the alternative expression for profit function (1) is the following equation,

(
δ(v1i, v2i)− b̃2i

)
GBl

2(b̃1i)
(b̃2i|B1 ≤ b̃1i)

I−1. (3)

A new notation GBl
2(b̃1i)

(·|B1 ≤ b̃1i) represents a bid distribution Pr
[
Bl

2(b̃1i) ≤ ·|B1 ≤ b̃1i
]
,

which is the distribution of second auction bid of a first auction loser, who lost to the winning
bid bw1 = b̃1i in the first auction. A number I − 1 is squared to this distribution; this squaring
occurs because bidder i competes against the same first auction losers who bid independently
in the second auction. They are the same as they decide their second auction bids according to
the same equilibrium strategy sl2, and they bid independently by independence.

A.2 shows the alternative expression for profit function (2) is the following equation, in
which the winning bid of bw1 is higher than bidder i’s first auction bid b̃1i:(

v2i − b̃2i
)
Gw

2|1(b̃2i|b
w
1 )GBl

2(b
w
1 )(b̃2i|B1 ≤ bw1 )

I−2. (4)

A new notation Gw
2|1(·|b

w
1 ) represents a bid distribution Pr[Bw

2 ≤ ·|B1 = bw1 ], which is the
distribution of second auction bid of the first auction winner, who outbid bidder i with bw1 .
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Equation (4) shows that bidder i competes against (i) I − 2 first auction losers and (ii) the first
auction winner who had bid bw1 in the first auction. This bw1 is known to every bidder by the
disclosure policy.

Given bidder i’s expected profit function (3), his optimal second auction bid b̃2i must satisfy
the following equation (5); it is the first order condition coming from the derivative of equation
(3) with respect to b̃2i.

δ(v1i, v2i) = b̃2i +
GBl

2(b̃1i)
(b̃2i|B1 ≤ b̃1i)

I−1

∂GBl
2(b̃1i)

(b̃2i|B1 ≤ b̃1i)I−1/∂b̃2i
≡ ξw2 (b̃2i, b̃1i). (5)

The left-hand side represents how much bidder i values the second object, while the right-hand
side is a function of bids, denoted by a function ξw2 . This function is the sum of b̃2i and a certain
fraction; this fraction only takes positive values, implying that it is optimal for bidder i, who
won the first auction, to shade his bid in the second auction.

Similarly, given bidder i’s another expected profit function (4), his optimal second auction
bid b̃2i must satisfy the following equation (6), which is the first order condition coming from
the derivative of equation (4) with respect to b̃2i.

v2i = b̃2i +
Gw

2|1(b̃2i|b
w
1 )GBl

2(b
w
1 )(b̃2i|B1 ≤ bw1 )

I−2

∂(Gw
2|1(b̃2i|b

w
1 )GBl

2(b
w
1 )(b̃2i|B1 ≤ bw1 )

I−2)/∂b̃2i
≡ ξl2(b̃2i, b

w
1 ), (6)

in which bidder i’s first auction bid b̃1i must be lower than the winning bid of bw1 . Analogous to
first-order condition (5), the left-hand side represents the value bidder i places on the second
object, while the right-hand side is a function of bids, denoted by the function ξl2. This function
is the sum of b̃2i and a certain fraction; similar to equation (5), it is optimal for bidder i, who
lost the first auction, to shade his bid in the second auction.

2.1.2 Expected Profit Function in the First Auction

First-order condition (5) expresses what bidder i must satisfy in choosing his optimal second
auction bid had he won the first auction, while another first-order condition (6) expresses the
optimal condition had he lost the first auction.

To choose the optimal first auction bid, b̃1i, bidder i has to maximize the following expected
profit function,

[
v1i − b̃1i + Vw(v1i, b̃1i)

]
G1(b̃1i)

I−1
+ V l(v1i, b̃1i)

[
1−G1(b̃1i)

I−1
]
. (7)

A new notation G1 represents bid distribution Pr[B1 ≤ ·], which is the distribution of the first
auction bid. G1(b̃1i)

I−1 represents the probability of bidder i winning the first auction with a
bid b̃1i

17. Because bidder i wins the first auction, he not only enjoys v1i but also Vw(v1i, b̃1i),
which is the continuation value of being the first auction winner in the second auction. This
concept of the continuation value also applies when bidder i loses the first auction with his first

17A.3 shows the equivalence between Pr[Bmax
1,−i ≤ b̃1i], probability of bidder i winning the first auction with a

bid b̃1i, and Pr[B1 ≤ b̃1i]
I−1.
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auction bid b̃1i, which I denote as V l(v1i, b̃1i)
18.

Given expected profit function (7), bidder i’s optimal first auction bid b̃1i must satisfy the
following equation (8)19, which is the first order condition coming from the derivative of equation
(7) with respect to b̃1i.

b̃1i = v1i −
1

I − 1

G1(b̃1i)

g1(b̃1i)

+

∫ b2

b2

(
GBl

2(b̃1i)
(x|B1 ≤ b̃1i)

I−1

∂GBl
2(b̃1i)

(x|B1 ≤ b̃1i)I−1/∂b̃2i

GBl
2(b̃1i)

(x|B1 ≤ b̃1i)
I−2

g1(b̃1i)

×
∂{GBl

2(b̃1i)
(x|B1 ≤ b̃1i)G1(b̃1i)}

∂b̃1i

)
dPr[B̃w

2 ≤ x|V1 = v1i]︸ ︷︷ ︸
−
∫ b2

b2

(Gw
2|1(x|b̃1i)GBl

2(b̃1i)
(x|B1 ≤ b̃1i)

I−2)2

∂(Gw
2|1(x|b̃1i)GBl

2(b̃1i)
(x|B1 ≤ b̃1i)I−2)/∂b̃2i

dPr[B̃l
2(b̃1i) ≤ x|V1 = v1i]︸ ︷︷ ︸ . (8)

First-order condition (8) shows that bidder i’s first auction bid b̃1i, which is the left-hand side,
equals his value for the first object v1i with some adjustments. One of the adjustment terms, the
fraction 1

I−1
G1(b̃1i)

g1(b̃1i)
, represents how much bidder i shades his first auction bid if he were assumed

to be interested in getting only the first object20. This assumption is not true because, in my
model, every bidder demands both the first and second objects. This demand forces bidder i to
consider the effect of adjusting his first auction bid b̃1i on his payoff in the second auction. The
first integral represents how much bidder i needs to adjust his b̃1i if he were to enter the second
auction as a first auction winner; the second integral is analogous to the first integral, except
that the second integral represents bidder i entering the second auction as a first auction loser.

Since I define functions ξw2 and ξl2 from first-order conditions (5) and (6), I can define a new
function ξ1 from modifying first-order condition (8).

v1i = b̃1i +
1

I − 1

G1(b̃1i)

g1(b̃1i)

−
∫ b2

b2

(
GBl

2(b̃1i)
(x|B1 ≤ b̃1i)

I−1

∂GBl
2(b̃1i)

(x|B1 ≤ b̃1i)I−1/∂b̃2i

GBl
2(b̃1i)

(x|B1 ≤ b̃1i)
I−2

g1(b̃1i)

×
∂{GBl

2(b̃1i)
(x|B1 ≤ b̃1i)G1(b̃1i)}

∂b̃1i

)
dGw

2|1(x|b̃1i)︸ ︷︷ ︸
+

∫ b2

b2

(Gw
2|1(x|b̃1i)GBl

2(b̃1i)
(x|B1 ≤ b̃1i)

I−2)2

∂(Gw
2|1(x|b̃1i)GBl

2(b̃1i)
(x|B1 ≤ b̃1i)I−2)/∂b̃2i

dGBl
2(b̃1i)|B1

(x|b̃1i)︸ ︷︷ ︸
≡ ξ1(b̃1i), (9)

in which the modification includes replacing the underbraced differential distributions in (8) with
dGw

2|1 and dGBl
2(b̃1i)|B1

. A new notation GBl
2(b̃1i)|B1

(·|b̃1i) represents bid distribution Pr[Bl
2(b̃1i) ≤

18A.4 and A.5 show analytical forms of both Vw and V l.
19A.6 shows the detailed derivation going from equation (7) to equation (8).
20Indeed, b̃1i = v1i − 1

I−1
G1(b̃1i)

g1(b̃1i)
appears in Guerre et al. (2000), which assumes a bidder with a unit demand.
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·|B1 = b̃1i], which is the distribution of the second auction bid of the first auction loser whose
first auction bid is b̃1i and the winning bid he observes is also b̃1i. Equation (10) shows that
this new bid distribution is the combination of other bid distributions that have already been
defined21.

GBl
2(b̃1i)|B1

(x|b̃1i) = GBl
2(b̃1i)

(x|B1 ≤ b̃1)

+
G1(b̃1i)

g1(b̃1i)

{
∂GBl

2(b̃1i)
(x|B1 ≤ b̃1i)

∂b̃1i
− ∂ξl2(x, b̃1i)/∂b̃1i

∂ξl2(x, b̃1i)/∂b̃2i

∂GBl
2(b̃1i)

(x|B1 ≤ b̃1i)

∂b̃2i

}
. (10)

Because the combinations of bid distributions constitute the left-hand side of equation (10), one
cannot guarantee that the resulting left-hand side is even a distribution. For this guaranteeing, I
need to put some restrictions on my model, which leads me to discuss the equilibrium strategies.

2.1.3 Equilibrium Strategies

Up to now, I described bidder i’s optimal bids, b̃1i and b̃2i, which satisfy bidder i’s first order
conditions, (5), (6), and (9). Not only for bidder i but for other I − 1 bidders, I can also derive
their optimal bids {(b̃1j , b̃2j)j ̸=i}, which satisfy their first order conditions. If all the bidders
follow the optimal bids {(b̃1i, b̃2i)i=1,...,I}, then equilibrium occurs when no bidder can gain by
deviating from this set of optimal bids; this occurrence of equilibrium happens if the conditions
in Theorem 1 are met.

Theorem 1. (Equilibrium) Conditions (i)-(iii) describe restrictions put on the bid distribu-
tions:
(i) Bid distributions are absolutely continuous, so that they have density.
(ii) A valid distribution must be formed from the right-hand side of equation (10).
(iii) Recall that the inputs for the functions ξw2 , ξl2, and ξ1 are bids and bid distributions;
functions ξw2 and ξl2 must be increasing in the second auction bid for every first auction bid; a
function ξ1 must be increasing in the first auction bid.
Conditions (i)-(iii) are necessary if the bids {(b̃1i, b̃2i)i=1,...,I}, which satisfy the first order con-
ditions, were to become the bids coming from an increasing and differentiable Bayesian Nash
Equilibrium strategy22.

Theorem 1 ensures that my model is testable because three conditions restrict the bid
distribution. One of these conditions, (iii), guarantees the second-order condition, thereby
justifying the use of the first-order conditions. The monotonicity of the bidding strategy also
follows from condition (iii): for instance, since v2 = ξl2(b2, b

w
1 ) holds by the first-order condition

(6), the second auction bid b2 of the first auction loser must increase with v2, as condition (iii)
stipulates that the function ξl2 is monotone. The monotonicity of ξl2 allows me to invert the
function, yielding ξl,−1

2 (v2; b
w
1 ) = b2.

This new inverse function ξl,−1
2 , along with other inverse functions ξw,−1

2 and ξ−1
1 , are the

increasing and differentiable Bayesian Nash Equilibrium strategies, as stated in Corollary 1.
21A.7 shows the detailed derivation of equation (10).
22I mention in A.8 that the proof for the Theorem is at the preliminary stage.
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Corollary 1. An inverse function ξl,−1
2 , whose arguments are v2 and bw1 , is the equilibrium

bidding strategy sl2 in the second auction for the first auction loser; for the first auction winner in
the second auction, his equilibrium bidding strategy sw2 is an inverse function ξw,−1

2 whose inputs
are v1 and δ(v1, v2). Lastly, an inverse function ξ−1

1 taking v1 as an input is the equilibrium
first auction bidding strategy s1.

Assume a bidder i who made a first auction bid of s1(v1i) but lost to a winning bid of
bw1 ; Corollary 1 asserts that bidder i’s second auction bid must be the amount of sl2(v2i, bw1 ),
independent of bidder i’s v1i. This independence of v1i arises because observing bw1 informs
bidder i that the V1 values of remaining I − 1 bidders are below s−1

1 (bw1 ), and this information
remains unaffected by what v1i is.

But, if bidder i won the first auction, then his v1i becomes relevant in the second auction
because bidder i values the second object at δ(v1i, v2i); this explains why the strategy sw2 takes
both v2i and v1i as inputs, and bidder i’s second auction bid amounts to sw2 (v1i, δ(v1i, v2i)), as
stated in Corollary 1. Since Corollary 1 stems from Theorem 1, which links the bid distribution
to my model, I discuss how to identify parameters of my model from the bid distributions in
the next section.

3 Identification

I assume that I have access to the following dataset; this assumption holds because the dataset
provided by the Seoul Agro-Fisheries & Food Corporation (hereafter, Corporation) also has a
similar structure.

{(Bmax
1ℓ ,W1ℓ, B

max
2ℓ ,W2ℓ, Z1ℓ, Z2ℓ, I1ℓ = I2ℓ)ℓ=1,...,L},

in which the subscript ℓ denotes the ℓ-th auction pair. Then given any ℓ-th auction pair, Bmax
1ℓ ,

W1ℓ, Z1ℓ, and I1ℓ represent the winning bid, the winner’s identity, the auction-specific covariate,
and the set of bidders in the first auction, while Bmax

2ℓ , W2ℓ, Z2ℓ, and I2ℓ refer to those of the
second auction.

Backbones of the model are the functions ξw2 , ξl2, and ξ1; these functions take as inputs
four bid distributions, which are Gw

2|1, GBl
2(b

w
1 ), G1, and GBl

2(b
w
1 )|B1

. Given that first three
bid distributions constitute the last bid distribution as shown in equation (10)23, expressing
first three distributions as a function of the dataset, as in equations (11)-(13), suffices for the
identification of the functions, ξw2 , ξl2, and ξ1.

Gw
2|1(b2|b1)

= exp
{
−
∫ +∞

b2

(Pr [Bmax
2 ≤ b|Bmax

1 = b1])
−1 dPr [Bmax

2 ≤ b,W2 = W1|Bmax
1 = b1]

}
, (11)

GBl
2(b)

(b2|B1 ≤ b)

23(10) shows that it consists of G1, GBl
2(b

w
1 ), and the function ξl2; this function uses Gw

2|1.
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= exp
{
− 1

I − 1

∫ +∞

b2

(Pr [Bmax
2 ≤ b|Bmax

1 = b1])
−1 dPr [Bmax

2 ≤ b,W2 ̸= W1|Bmax
1 = b1]

}
,

(12)

G1(b1) = Pr[Bmax
1 ≤ b1]

1/I , (13)

of which the right-hand sides consist of the probabilities that are directly identified from the
dataset; for simplicity, I suppress the dependence of these bid distributions on auction covariate
Z and the number of bidders I.

Since the dataset provided by the Corporation excludes the losing bids and the losers’
identities, B.1 and B.2 show how to circumvent this exclusion in deriving equations (11)-(13):
this circumvention relies on Theorem 7.3.1 of Rao (1992), which proves that one can uniquely
identify the distribution of interest even when the dataset only contains the maximum values
and the identity of the corresponding agents, a situation that aligns precisely with mine.

Given that equations (11)-(13) identify the functions ξw2 , ξl2, and ξ1, I use these functions
to identify the parameters of interest [F1, F2|1, δ]. The first parameter F1, value distribution of
the first object, is identified because my model restricts the function ξ1 to be monotone in the
first auction bid. This monotonicity restriction, along with the first order condition v1 = ξ1(b1)

from equation (9), implies that we must have V max
1 = ξ1(B

max
1 ). Since random variable Bmax

1

and its distribution directly come from the dataset, it means that random variable V max
1 and its

distribution are also identified. The distribution of V max
1 is F I

1 because of independence, which
implies that I can recover F1.

The second parameter F2|1, value distribution of the second object given a certain value of
the first object, is identified by the following equation (14).

Pr[V2 ≤ ·|V1 = v1] = Pr[V2 ≤ ·|B1 = b1]

= Pr[V2 ≤ ·|B1 < b1] +
G1(b1)

g1(b1)

(
∂

∂b1
Pr[V2 ≤ ·|B1 < b1]

)
=

∫ b2

b2

1
[
ξl2(x, b1) ≤ ·

]
dGBl

2(b1)
(x|B1 ≤ b1)

+
G1(b1)

g1(b1)

(
∂

∂b1

∫ b2

b2

1
[
ξl2(x, b1) ≤ ·

]
dGBl

2(b1)
(x|B1 ≤ b1)

)
, (14)

in which the first equality holds because changing the condition from the event {V1 = v1} to
the event {ξ1(V1) = ξ1(v1)} = {B1 = b1} keeps the original conditional distribution the same
because function ξ1 is monotone; the second and last equalities, established in B.3, prove that
I can identify the value distribution F2|1 from the bid distributions and the function ξl2, which
is also a function of bid distributions.

Since the function ξl2 is used in equation (14) to identify the value distribution F2|1, I can
analogously use the function ξw2 to identify another value distribution, i.e., the distribution of
the adjusted value of the second object from having a v1-valued object:

Pr[δ(v1, V2) ≤ ·|V1 = v1] =

∫ b2

b2

1 [ξw2 (x, b1) ≤ ·] dGw
2|1(x|b1), (15)
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whose detailed derivation is provided in B.4; the appendix uses the equality between δ(v1, v2)

and ξw2 (b2, b1), which I established in the first-order condition (5).
To identify the last parameter δ, a function that represents how much v2 is adjusted from

having v1-valued object, we focus on the left-hand side of both equations (14) and (15). The
left-hand side of (14) is a distribution of the random variable V2 while that of (15) is also a
distribution of the random variable, but a transformation of V2; the transformation here is a
function δ(v1, ·). Because this function is monotone in its second argument, one can invoke the
property of a random variable that a monotone function preserves the quantiles, leading to the
following equality.

α-quantile of (15) = δ(v1, α-quantile of (14)).

This equality implies that varying α between 0 and 1 fills both the domain and the range of a
function δ(v1, ·), which finishes the identification of the function.

Computing quantile causes burden in practice, especially when we have to do it twice for
each (14) and (15). B.5 shows that by starting from the grid on the second auction bids, instead
of on the αs, we compute the quantile once for the bid distribution Gw

2|1, and still identify the
function δ(v1, ·). This alternative approach reduces the computational burden, which naturally
leads to a discussion on parameter estimation.

4 Estimation and Monte Carlo

Previous section shows us that the parameters of the model are identified by three bid distribu-
tions Gw

2|1, GBl
2(b

w
1 ) and G1. These bid distributions are constructed from four random variables

(Bmax
2 , Bmax

1 , W2, W1) and its distributions, such as Pr[Bmax
1 ≤ ·], as shown in equations

(11)-(13). I propose its kernel density estimators (16)-(19) as follows:

P̂r [Bmax
1 ≤ b1] =

∫ b1

−∞

1

LI

1

h1,1

∑
ℓ∈LI

K

(
x−Bmax

1ℓ

h1,1

)
dx, (16)

P̂r [Bmax
2 ≤ b|Bmax

1 = b1] =

∫ b
−∞

1
h2,2

1
h1,2

∑
ℓ∈LI

K
(
x−Bmax

2ℓ
h2,2

)
K
(
b1−Bmax

1ℓ
h1,2

)
dx

1
h1,1

∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,1

) , (17)

in which the number of bidders is set at I. A set LI includes all the auction pairs in which I

bidders attended, and the number LI denotes the size of the set LI , namely LI = |LI |. Before
describing the bandwidth hsuperscript

subscript1, subscript2, which I choose as Silverman’s rule of thumb, I
introduce the remaining estimators (18) and (19).

P̂r [Bmax
2 ≤ b,W2 = W1|Bmax

1 = b1]

=

∫ b

−∞

1
h1=2
2,2

1
h1=2
1,2

∑
ℓ∈L1=2

I
K

(
x−Bmax

2ℓ

h1=2
2,2

)
K

(
b1−Bmax

1ℓ

h1=2
1,2

)
1

h1=2
1,1

∑
ℓ∈L1=2

I
K

(
b1−Bmax

1ℓ

h1=2
1,1

) ∑
ℓ∈L1=2

I
K
(
b1−Bmax

1ℓ
h1,1

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,1

) dx, (18)

P̂r [Bmax
2 ≤ b,W2 ̸= W1|Bmax

1 = b1]
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=

∫ b

−∞

1

h1 ̸=2
2,2

1

h1 ̸=2
1,2

∑
ℓ∈L1 ̸=2

I
K

(
x−Bmax

2ℓ

h1 ̸=2
2,2

)
K

(
b1−Bmax

1ℓ

h1 ̸=2
1,2

)
1

h1 ̸=2
1,1

∑
ℓ∈L1 ̸=2

I
K

(
b1−Bmax

1ℓ

h1 ̸=2
1,1

) ∑
ℓ∈L1 ̸=2

I
K
(
b1−Bmax

1ℓ
h1,1

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,1

) dx, (19)

in which subscript2 of the bandwidth24 hsuperscript
subscript1, subscript2 indicates the number of random

variables, and subscript1 indicates a random variable Bmax
1 if 1 and Bmax

2 if 2; superscript
represents which auction pairs should be used: if 1 = 2, it means I use auction pairs where
the winners of both the first and second auctions are the same, i.e., auction pairs from a set
{ℓ ∈ LI : W1ℓ = W2ℓ} ≡ L1=2

I .
These estimators25 (16)-(19) constitute the plug-in estimator for the bid distributions: for

example, I can form the estimator of the bid distribution G1 by replacing the estimand in
equation (13) with the estimator (16) as follows,

Ĝ1(b1) = P̂r[Bmax
1 ≤ b1]

1/I =

∫ b1

−∞

1

LI

1

h1,1

∑
ℓ∈LI

K

(
x−Bmax

1ℓ

h1,1

)
dx

1/I

.

Similarly, the estimands in equations (11)-(12) can be replaced by the estimators (17)-(19),
meaning that I come up with plug-in estimators Ĝw

2|1 and ĜBl
2(b

w
1 ); C.2-C.10 show the details of

all the plug-in kernel density estimators.
I do not address whether the parameters of my model can be consistently estimated as I

remains fixed while the number of pairs, LI , approaches infinity. However, since the previous
Identification section demonstrates that all parameters and the functions used to identify them
are identifiable from the dataset, I assert that the necessary conditions for consistency is met
(Lewbel (2019)).

Using these plug-in estimators of the bid distributions (C.2-C.10), one can estimate the
model parameters [F̂1, F̂2|1, δ̂] by following the steps outlined in the Identification section. The
next subsection demonstrates that the median estimates of my estimators align with the true
estimands.

4.1 Monte Carlo

I assume I = 2, namely two bidders. I independently draw their first auction bids from the
common bid distribution G1; the drawn bids decide the winner and the loser of the first auc-
tion. For the first auction winner whose bid is bw1 , I draw his second auction bid from the bid
distribution Gw

2|1(·|b
w
1 ); for the first auction loser who observes bw1 , I draw his second auction

bid from the bid distribution GBl
2(b

w
1 )(·|B1 ≤ bw1 ).

This process concludes one auction pair ℓ. I repeat the process thousand times so that I
generate the first set of thousand ℓs, denoted as LI,F irst. Then I repeat this generation two
hundred times so that I get two hundred samples of LI,F irst, ...,LI,Two−hundredth.

24C.1 shows the closed-form expression of the bandwidth.
25Derivations of (16) and (17)-(19) are introduced in C.2 and C.1; auction covariate Z is considered.
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Lastly, the bid distributions that I am considering are as follows,

Gw
2|1(b2|b

w
1 ) = b

(bw1 )1/70+0.1
2 b2, b

w
1 ∈ [0, 1]2,

GBl
2(b

w
1 )(b2|B1 ≤ bw1 ) = b

(bw1 )1/70+0.2
2 b2, b

w
1 ∈ [0, 1]2,

G1(b1) = b0.51 b1 ∈ [0, 1].

C.11 shows that these bid distributions satisfy all the necessary conditions of the model, outlined
in Theorem 1; a caution to this satisfaction is that the second condition is only nearly satisfied,
though it comes very close to perfect satisfaction―a point I elaborate on when discussing Figure
5. Given the near-perfect satisfaction of this condition, I assume Theorem 1 holds for these bid
distributions, which enables me to invoke Corollary 1 and plot the equilibrium bidding strategies
as follows; dashed (median) and dotted (ninety percent confidence interval) lines come from
pointwise estimates of the two hundred bootstrapped samples, LI,F irst, ...,LI,Two−hundredth.

Fig. 1 – Inverse of ξ̂l2(·, bw1 ) with bw1 = 0.3
for dashed and dotted lines, and inverse of
ξl2(·, bw1 ) for solid line; by Corollary 1, these
two inverses are equivalent to ŝl2(·, ξ1(bw1 )) and
sl2(·, ξ1(bw1 )), where ξ1(b

w
1 ) = 0.96:

X-axis - v̂2 (dashed and dotted lines)
v2 (solid line)

Y-axis - b2

Fig. 2 – Inverse of ξ̂w2 (·, bw1 ) with bw1 = 0.3
for dashed and dotted lines, and inverse of
ξw2 (·, bw1 ) for solid line; by Corollary 1, these
two inverses are equivalent to ŝw2 (ξ1(b

w
1 ), ·)

and sw2 (ξ1(b
w
1 ), ·), where ξ1(b

w
1 ) = 0.96:

X-axis - δ(ξ1(bw1 ), v2)
∧

(dashed & dotted lines)
δ(ξ1(b

w
1 ), v2) (solid line)

Y-axis - b2

Figure 1 shows the estimated (dashed and dotted) and the true (solid) second auction
strategy of the first auction loser, who observed the winning bid26 of bw1 = 0.3. From this
observation, the loser makes the second auction bid b2 that fulfills the first-order condition (6);
so, both the number ξl2(b2, 0.3) and his value for the second object v2 must equal. This equality
pinpoints 0 and 1.90 on the horizontal axis, which are the lowest and the highest v2s, because
a function ξl2 is monotone in the second auction bid.

Not only ξl2, but also ξw2 is monotone in the second auction bid; Figure 2 shows the monotone
second auction strategy of the first auction winner. Since he won with a bid of bw1 = 0.3, first-

26I choose 0.3 because this number is close to the expectation of B1, namely
∫ 1

0
b (db0.5/db)db = 1

3
.
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order condition (5) predicts that his second auction bid b2 must match a number ξw2 (b2, 0.3)

with his value of the second object, not v2 but the adjusted number δ(0.96, v2). This adjustment
occurs because of the first object he owns.

The value of the first object, v1 = 0.96, comes from the first-order condition (9) of the first
auction; the condition asserts that a bidder who bids 0.3 must have valued it at 0.96 = ξ1(0.3),
which is shown in Figure 3.

Fig. 3 – Inverse of ξ̂1(·) for dashed and dot-
ted lines, and inverse of ξ1(·) for solid line; by
Corollary 1, these two inverses are equivalent
to ŝ1(·) and s1(·):

X-axis - v̂1 (dashed and dotted lines)
v1 (solid line)

Y-axis - b1

Fig. 4 – Value distribution of the first object:
F̂1(·) for dashed and dotted lines, F1(·) for
solid line:

X-axis - v̂1 (dashed and dotted lines)
v1 (solid line)

Y-axis - Cumulative Probability

A monotone function ξ1 maps first auction bid 0.3 on the vertical axis to the value of the first
object, 0.96 = ξ1(0.3), on the horizontal axis. The estimator ξ̂1 also maps every first auction
bid to its estimates, v̂1: median follows the true line, but the width of the confidence interval
appears wide.

The wide interval occurs because various bid distributions and its integrations constitute
the estimand ξ1, shown in (9). Because the same estimand ξ1 constitutes the value distribution
of the first object F1, the interval also gets widened in Figure 4, the estimates of F̂1.

Since F1 is one of the parameters of my model [F1, F2|1, δ], I show the estimates of the
remaining parameters F̂2|1 and δ̂ in Figures 5 and 6: before discussing the findings from the
figures, note that the upward-sloping solid line in Figure 5, representing the true value distribu-
tion F2|1, appears to be valid: the line is strictly increasing, with probabilities of zero and one
at the minimum and maximum of its support. This valid form of the distribution F2|1 shows
that the second condition of the model is nearly satisfied, as C.11.2 proves that F2|1 and the
bid distribution GBl

2(b1)|B1
are equivalent.
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Fig. 5 – Value distribution of the second
object given v1 = 0.96: F̂2|1(·|0.96) for dashed
and dotted lines, F2|1(·|0.96) for solid line:

X-axis - v̂2 (dashed and dotted lines)
v2 (solid line)

Y-axis - Cumulative Probability

Fig. 6 – Complementarity function given v1 =
0.96: δ̂(0.96, ·) for dashed and dotted lines,
δ(0.96, ·) for solid line:

X-axis - v̂2 (dashed and dotted lines)
v2 (solid line)

Y-axis - δ(0.96, v2)
∧

(dashed and dotted lines)
δ(0.96, v2) (solid line)

Going back to the figures, Figure 5 shows the value distribution F2|1(·|0.96), representing
how likely some number from the random variable V2 will be realized given that a bidder feels
the first object at v1 = 0.96. The solid line is almost linear, suggesting that the bidder expects
any realization of V2 between 0 and 1.90 has similar chance, as long as he values the first object
at 0.96.

Testing with various values of the first object other than 0, 96, which I do not show in this
paper, still maintains the linearity, suggesting that both random variables V1 and V2 are nearly
independent. This near-independence occurs because of the bid distributions Gw

2|1 and GBl
2(b

w
1 )

that I started with; a common exponent 1/70 weakens the first auction bid bw1 ’s impact on the
realization of the second auction bids, which my model rationalizes as random variables V1 and
V2 being nearly independent.

From the bid distributions, my model also rationalizes that both V1 and V2 must be substi-
tutes as shown in Figure 6: having a 0.96-valued first object decreases the value of the second
object v2 from 1.90 to 1.83. The decrease occurs because the bid distributions that I started
with assume that a bidder bids less aggressive in the second auction if he owns the first object;
a number 0.1, which is smaller than 0.2 from GBl

2(b
w
1 ), is added to the exponent of Gw

2|1.
C.11 describes why I come up with such numbers: with these numbers, bid distributions

pass the restrictions of my model. In the next section, I check whether the bid distributions of
the Korean Fruit Auction also pass the model’s restriction.

5 Application

My model applies to an auction where a single object is sold one at a time using a first-price
sealed-bid format, with only the winning bid and the winner’s identity disclosed from previous
auctions. The Korean Fruit Auction aligns with this type of auction, as bidders submit their
sealed bids using a gadget within the designated purple circle shown in Figure 7.
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Fig. 7 — Auctioneer’s Monitor at 3:02 AM on July 21, 2023, at Seoul auction house. Both
the left and right panels display the same information. Information within the purple circle
pertains to the ongoing auction, while information within the red circle denotes the previous
auction. The pink circle inside the red circle displays the winning bid per box (12,000) and the
winner’s identity (11).

Figure 7 comes from the Seoul auction house, one of the five auction houses in the Korean
Fruit Auction. Each auction house operates independently with its own monitor and conducts
its own auctions.

The auction highlighted by the purple circle represents the ongoing auction, which typically
lasts between three to ten seconds and involves the sale of a single item. This item has specific
attributes displayed: the type of produce (Cell C), its origin (Cell A), and the producer’s name
(Cell F). Seven boxes of the produce are on sale (Cell D), each weighing three kilograms (Cell
B) and classified as medium size (Cell E).

A bidder can place bids at only one of the auction houses, and his bid expresses how much,
per box, he is willing to pay―hereafter, the term ‘winning bid’ refers to the winning bid per
box.

The auction marked by the red circle in Figure 7 represents the previous auction, indicating
that multiple auctions are conducted within a single day. Only the winning bid (12,000) and
the winner’s identity (11) from this previous auction are disclosed, as shown in the pink circle.

I provide below necessary context surrounding this auction.

5.1 Necessary Context for the Korean Fruit Auction

Garak Market, located in Seoul, is one of the largest of the thirty-three public wholesale mar-
kets that transfer vegetables and fruits from farmers to wholesalers. This market alone accounts
for 34.3%27 of Korea’s total vegetable and fruit transaction volume. The primary transaction
method at Garak Market is through auctions, which represent 79.6% of the total volume, trans-

27As of 2022, thirty-three public wholesale markets handle 99.4% of Korea’s vegetable and fruit trade volume,
with Garak Market representing 34.5% of this volume. The 34.3% figure results from multiplying these two
percentages.
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lating to approximately 27 percent28 of all vegetables and fruits in Korea being transferred from
farmers to wholesalers via auction―equating to a total volume of 1.8 million tons and a total
value of $2.95 billion29. Auctions are held every day except Sundays and certain designated
holidays. Further details about Garak Market and its auctions are provided in D.1.

Given the high stakes, a public corporation named Seoul Agro-Fisheries & Food Corporation
(hereafter, the Corporation) regulates the market, including the auction. Six auction houses
operate under the Corporation, each employing wholesalers who act as bidders in the auction.
There are two types of bidders: ‘Veggie’ bidders, who specialize in purchasing vegetables, and
‘Fruit’ bidders, who focus on fruits. Veggie bidders typically concentrate on a single variety
(e.g., a cabbage bidder), whereas Fruit bidders tend to buy across all fruit types, requiring a
more complex bidding strategy than that of Veggie bidders. Notably, no bidder is known to
participate in both categories.

In this paper, I focus on the Fruit auction (hereafter, ‘auction’) since the bidder I contacted
is a Fruit bidder, allowing me to ask detailed questions that are not covered in government
reports.

Of the six auction houses, five deal with fruits: Joongang, Nonghyup, Seoul, Donghwa,
and Hankook. Each of these houses has approximately 90 fruit bidders and 10 fruit auctioneers
(hereafter, ‘bidders’ and ‘auctioneers’). Bidders enter contracts with one auction house, typically
lasting between three to ten years, and are permitted to bid only at the house with which they
are contracted. In 2022, the period covered by my dataset, no bidders were known to be expelled
from any auction house, as the required monthly transaction value is easily met.

One of the regulations governing the auction requires each auction house to auction specific
fruits within designated time periods30:

• 2:00 am - 5:00 am : perishable fruits such as grapes, tomatoes, and tangerines.

• 8:00 am31 - 9:30 am: less perishable fruits such as pears, apples, and persimmons.

While the starting times are fixed, the ending times may vary depending on the number of fruit
boxes arriving at the auction site.

My conversations with the auctioneer and the bidder align in that the exact number of
boxes of a given variety from a particular farmer is known only the day before or on the day
of its arrival. This uncertainty arises because farmers may adjust the agreed-upon number of
boxes or the transportation date as harvesting continues. Acknowledging this uncertainty, the
farmer and the auction house―where the auctioneer serves as a mediator―typically enter into
a contract that specifies an estimated quantity of boxes and a general timeframe (e.g., the third
week of July) for delivery. This uncertainty also explains why bidders inspect the items a few
hours before each day’s auction.

As boxes of fruit arrive at the auction site, the auctioneer has some discretion in determining
the sequence of items to be auctioned. For example, an auctioneer responsible for selling apples

28This 27% figure is derived by multiplying 34.3% by 79.6%.
291,779,392 tons and ₩3,835,554 million, equivalent to $2,950 million, assuming an exchange rate of $1 =

₩1300.
30A similar rule applies to vegetables regarding the time period.
31Although the table in D.1.1 stipulates a start time of 8:30 am, the auction actually begins at 8:00 am.
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can decide the order of apple auctions. Auctioneers often allocate high-quality products at the
beginning of the auction to start with a high winning bid, aiming to set a positive tone for the
remainder of the auction.

Among fruits, I focus specifically on apples, as they were one of the top five fruits traded
in 2022―accounting for 38,155 tons and $89 million32 in transaction volume and value. Addi-
tionally, the price surge of apples in the first half of 2024 was considered problematic, making
policy recommendations regarding apples more impactful.

5.2 Apple Auctions

As mentioned in the previous subsection, each auction house is required to begin selling apples
at 8:00 am. Typically, auction houses sell pears first, then move on to apples, and subsequently
to other fruits, such as persimmons. On average, apple auctions begin at 8:05 am and conclude
at 8:33 am, as shown in D.1.4.

The Corporation provided me with a dataset, an excerpt of which is shown below.

Table 1: Excerpt of a Dataset Showing the Auction Covariates Z for Apples

Ending
Time

Day,
Auction
House,
Order

Winning
Bid

Per Box

No.
of

Boxes

Kg
per
Box

Winner
ID Size Type Grade Place of

Origin Group

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
8:37:55 July 19, Seoul, 6 $40.0 3 10 4044 40 Aori High Yesan co-op.

Note: The dataset, from which this excerpt is taken, covers January, February, March, April, May, June,
July, and December of 2022, showing that 87,349 apple auctions were conducted during this period. The
first column shows the ending time of an auction, while the second column indicates that the auction
was held on July 19 at the Seoul Auction House and was the sixth apple auction for that day-house pair.
In this auction, three boxes (col. (4)) of high-grade (col. (9)) Aori apples (col. (8)) were auctioned,
with each box containing 40 apples (col. (7)), sourced from Yesan (col. (10)) and grown by a farmer in
a cooperative (col. (11)). A bidder with the anonymized ID 4044 (col. (6)) won the auction, bidding
$40.0 per box (col. (3)), and each box weighed 10 kilograms (col. (5)).

The dataset includes 87,349 apple auctions that took place between January and July, and
in December of 2022. Auction covariates, denoted as Z, indicate that the auction in Table 1
ended at 8:37:55 (column (1)), was held by the Seoul auction house on July 19, and was the
sixth auction for that specific day-house pair (column (2)). The remaining columns indicate
that three boxes of high-Grade Aori apples (columns (4), (9), and (8)) were sourced from a
farmer in Yesan who belongs to a cooperative rather than operating individually (columns (10)
and (11)). Each box weighed 10 kilograms and contained 40 apples (columns (5) and (7)). The
auction was won by a bidder with anonymized ID 4044, who bid $40.0 per box (columns (6)
and (3)).

As shown in Table 1, the dataset does not disclose the number of bids submitted in each
auction, in accordance with the Corporation’s internal regulations. However, various sources,
including D.1.5, suggest that typically three to seven bids are submitted per auction, with the
number of bids decreasing as the auction nears its end.

32₩116 billion
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The set of bidders submitting bids for each day-house pair is smaller than the total pool
of approximately 90 potential bidders in that auction house. Only those bidders who wish
to participate register before the auction begins and gather around the auctioneer’s monitor
to place their bids. The size of this group for any given day-house pair is not disclosed, but
typically around 40 bidders33 are observed surrounding the auctioneer’s monitor.

The second column of the following table indicates that, within this group, the average
number of unique winning bidders per day-house pair ranges from 15.5 to 37.0.

Table 2: Descriptive Statistics for the Number of Auctions and Unique Winner IDs per Day

Average (Std. Dev.) Number of
Auctions per Day

(1)

Average (Std. Dev.) Number of
Unique Winner IDs per Day

(2)
- Joongang: 135.2 (93.4)
- Nonghyup: 110.1 (68.4)
- Seoul: 105.5 (79.0)
- Donghwa: 58.8 (44.9)
- Hankook: 48.1 (39.3)

- Joongang: 37.0 (15.7)
- Nonghyup: 29.5 (11.0)
- Seoul: 31.8 (14.0)
- Donghwa: 18.9 (8.4)
- Hankook: 15.5 (7.2)

Note: The figures in both columns are based on data from 87,349 auctions.
Each column represents the average (with standard deviation) number of
apple auctions per day and the number of unique winner IDs per day for each
auction house.

The first column of Table 2 shows that, on average, 48.1 to 135.2 auctions occur in a
single day, differing from the two periods covered by my model. Acknowledging this inherent
difference, I use each house’s last two auctions34, with descriptive statistics provided below.
From this point forward, I refer to the second-to-last auction as the first auction and the last
auction as the second auction.

33Kim (2017) reports a range of fifty to eighty bidders, though the specific auction house and types of fruits
or vegetables auctioned are unspecified. On the day I visited, July 21, 2023, thirty to fifty bidders were present
at the Seoul Auction House.

34The approach of using the last two auctions in a sequential auction has also been adopted in Mcafee and
Vincent (1993).
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Table 3: Desc. Statistics for Covariates Z of the Last Two Auctions

A. Number of Auction Pairs per House
- Joongang (185), Seoul (195),
Hankook (187), Donghwa (194),
Nonghyup (192).

- Total pairs (953), i.e., 1,906 auctions.

B. Winning Bid per Box (Table 1, Col. 3)
- First auction
(Mean, Std. Dev., 5th/50th/95th Percentiles)
: 14.6, 7.7, 5.0/13.1/28.5.

- Second auction
: 13.5, 7.7, 3.8/11.5/27.7.

- Correlation between first and
second auctions: 0.768.

C. Number of Boxes (Table 1, Col. 4)
- First auction
(Mean, Std. Dev., 5th/50th/95th Percentiles)
: 24.8, 26.3, 1.0 / 16.0 / 71.4.

- Second auction
: 22.8, 26.9, 1.0 / 11.0 / 69.4.

D. Winner ID (Table 1, Col. 6)
- Probability of first auction winner winning
the second auction: 33.2% (316/953).

- Unique winning IDs appear
207 times out of 1,906 auctions.

- Top 20 IDs win 816 auctions
: i.e., Top 10% (20/207) wins
42.8% (816/1,906) of auctions.

E. Size (Table 1, Col. 7)
- First auction; showing top five sizes
(No. of apples inside a box (No. of auctions))
: 50(207), 40(181), 30(83), 45(81), 60(57).

- Second Auction; showing top five sizes
: 50(180), 60(127), 40(113), 30(78), 45(74).

F. Type (Table 1, Col. 8)
- Probability of same types being auctioned
: 93.9% (895/953).

- Nine unique types exist
: Mishima (606), Fuji (520),
and Myanmar (400) represent
over half of 1,906 auctions.

G. Place of Origin (Table 1, Col. 10)
- Probability of same origins being
repeated: 94.2% (898/953).

- Cheongsong (443), Yeongju (261),
Yeongcheon(234), and Andong(203) represent
over half of 1,906 auctions.

H. Kg per Box, Grade, and Group
(Table 1, Cols. 5, 9, and 11)

- 95% of the auctions deal with 10 kilograms
(1,810/1,906).

- 87% of the apples are marked as the
highest grade∗ (1,656/1,906).

- 68% of the apples come from farmers who
are members of a cooperative (1,294/1,906).

Note: Of the 87,349 auctions, selecting the last two auctions from each auction house results in
1,906 auctions, or 953 auction pairs. There are eight items, labeled A through H, with all statistics
for these items derived from the 953 auction pairs. Additionally, the covariates discussed for each of
the eight items correspond to those in Table 1. Lastly, the asterisk (*) in Item H indicates that 87%
of the apples are marked as the highest grade. Since farmers assign these grades to their produce,
grading is often inflated, which explains why bidders inspect the boxes of fruit prior to the auction.

Of the 87,349 auctions, selecting the last two auctions from each auction house yields 1,906
auctions, or 953 auction pairs, for which Table 3 provides descriptive statistics. Eight items,
labeled A through H, offer descriptive statistics for the corresponding columns in Table 1. Item
B indicates that the mean winning bid of the second auction (13.5) is lower than that of the
first auction (14.6) and that both winning bids are serially correlated―density plots for each
winning bid, as well as their joint contour plot, are shown below.
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Fig. 8 – Marginal winning bid densities for
the first auction (blue) and the second auction
(orange):
X-axis - Winning bid of the first (blue) and

second (orange) auction
Y-axis - Density

Fig. 9 – Contour plot of joint winning bids
from the first and second auctions:
X-axis - Winning bid of the first auction
Y-axis - Winning bid of the second auction

Figure 8, with an x-axis ranging from $0 to $60, displays the marginal winning bid densities
for the first and second auctions. The winning bid density from the first auction is skewed
further to the right than that of the second auction. Figure 9, with x- and y-axes representing
the winning bids of the first and second auctions, each ranging from $0 to $30, illustrates that
the two winning bids are indeed correlated.

Regarding Item D of Table 3, bidders are indeed asymmetric, with the top 10% of bidders
winning 42.8% of the auctions. One approach to addressing this asymmetry is to use a model
in which each bidder draws their value for the first object from their own individual value
distribution, rather than from a common value distribution F1 as in the current model. However,
allowing for these initial differences increases the number of testable restrictions that the bid
distribution must satisfy, as detailed in D.2. To limit these restrictions, I continue to use the
original model and present the estimation results based on this model in the next subsection.

5.3 Estimation Results for Apple Auctions

As mentioned previously when introducing Table 1, the number of bidders in each auction is
not disclosed in the dataset. Nonetheless, various sources, including D.1.5, indicate that three
to seven bidders typically participate in each auction, with the number of bids decreasing as
the auction progresses. Given this decline, I set the number of bidders to the lowest possible
number35, I = 3, meaning that each of the 953 pairs was attended exogenously36 by three

35Guerre and Luo (2022) discusses methods for identifying the distribution of the number of bidders, N (which
corresponds to I in my case), when the analyst has access only to winning bids.

36Two notable papers that incorporate a bidder’s entry decision (known as endogenous participation) into
the model are Samuelson (1985) and Levin and Smith (1994). These papers differ in whether a bidder knows
his private value before entry (Samuelson) or after (Levin and Smith). To determine which model should be
used, Li and Zheng (2012) develops a Bayesian model selection method, while Marmer et al. (2013) proposes a
nonparametric test. Among the many studies that incorporate endogenous participation, both Athey et al. (2011)
and Li and Zhang (2015) assume that a bidder knows his private value after paying the entry cost, aligning with
the approach of Levin and Smith (1994). A recent notable paper, Gentry and Li (2014), proposes an Affiliated-
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bidders: for robustness, D.4 presents the estimation results when I = 5.
In the estimation, I treat each of the 953 auction pairs as independent, implicitly meaning

that (i) pairs from different auction houses are considered independent (e.g., two auction pairs
from Feb 22, 2022―one from the Seoul house and one from the Joongang house―are treated as
independent), and (ii) any two pairs from the same auction house are also independent (e.g.,
within the Seoul house, a pair from Feb 19 and a pair from Feb 22 are independent).

The context of the Garak market partially supports these implicit assumptions because, as
discussed in subsection 5.1, (i) each auction house is allowed to begin selling apples only after
8 am, and no bidder can participate in auctions at multiple houses, and (ii) bidders can only
accurately predict the exact number of boxes of fruit from a specific farmer, either on the day
of arrival or the day before. Furthermore, a conversation with a bidder indicates that bidders
do not engage in fruit hoarding, as 90% of their daily purchases are promptly delivered to their
customers, and regulations are in place to curb secondary markets among bidders after the
auction.

While items F and G in Table 3 indicate that the types and places of origin of the apples in
the first and second auctions are alike, items C and E reveal heterogeneity between the auctions:
(i) the number of boxes sold decreases in the second auction, and (ii) size 60 becomes the second
most frequent in the second auction.

To allow the estimates from my model to incorporate observed heterogeneity in covariates
Z, I use the bid homogenization method, with details provided in D.5.1.

The homogenization method assumes that, given a specific value z of the covariate Z, any
bidder i’s value for the object at the k-th auction, denoted vik, is given by vik = exp(z′β)×uikϵk.
In this formulation, uik represents bidder i’s private value for the object at the k-th auction,
independent of the covariate, and ϵk captures auction-level unobserved heterogeneity. This
multiplicatively separable structure, as adopted in Asker (2010) and Sant’Anna (2018), allows
both the mean and variance of a bidder’s value distribution to be influenced by the covariate
Z.

For this paper, I set ϵk = 1, thereby disregarding unobserved heterogeneity in the analysis37.
Sant’Anna (2018) establishes that, under this assumption, the analyst proceeds with estimation
by following three steps: (i) regressing the log winning bids on the covariates to obtain β̂ and
the residuals, denoted as bo, which are called homogenized bids and are independent of the
covariate Z; (ii) using bo to obtain the covariate-free estimate v̂o from the estimators; and (iii)
multiplying both the covariate-free estimate, v̂o, and the homogenized bid, bo, by exp(z′β̂) to
recover the value estimate, v̂, and the unhomogenized bid, b, which incorporate the effect of a
specific covariate value, z.

Upon completing the first step of the estimation (namely, (i)), I obtain 953 pairs of homog-
enized bids, denoted by {(bo1ℓ, bo2ℓ) : ℓ ∈ 1, . . . , 953}. The regression results for this initial step
are provided in D.5.3. Below, I summarize the mean, standard deviation, and 5th/50th/95th

Signal model that encompasses both the Samuelson and Levin-Smith approaches and discusses identification
results.

37Unobserved heterogeneities, which refer to factors observed by the bidder but not captured in the dataset,
include details such as the exact identity of a farmer (Cell F of Figure 7). A notable paper that discusses
addressing unobserved heterogeneity in auctions is Krasnokutskaya (2011).
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percentiles for each bo1 and bo2.

• Homogenized winning bid of the first auction (bo1) : 1.02, 0.40, 0.42/1.00/1.73,

• Homogenized winning bid of the second auction (bo2): 1.00, 0.42, 0.36/0.97/1.72.

These descriptive statistics are comparable to Item B of Table 3, and one can observe that after
homogenization, the mean and the 50th percentile have become much closer — D.5.2 presents
the density plots for each homogenized winning bid, along with their joint contour plot, which
resemble those shown in Figures 8 and 9.

Given the homogenized pairs, I create 200 bootstrap samples by sampling with replacement
to come up with the following figures — I chose a Gaussian kernel and set the bandwidth based
on Silverman’s rule of thumb38; I use a dashed line to denote the median of the estimates and
a dotted line to represent the 90% nonparametric bootstrap confidence interval.

Fig. 10 – Inverse of two estimators, ξ̂w2 (black)
and ξ̂l2(red), given bo1 = 0.40:

X-axis - δo(ξ1(bo1), vo2)
∧

for black, v̂o2 for red
Y-axis - bo2

Fig. 11 – Bidding strategies, ŝw2 (black) and
ŝl2(red), given Bmax

1 = $5.4, along with me-
dian values of exp(Z ′

1β̂) and exp(Z ′
2β̂):

X-axis - δ(ξ1(Bmax
1 ), v2)
∧

for black, v̂2 for red
Y-axis - b2

Note the y-axis of Figure 10, which represents the homogenized second auction bid bo2. By
fixing the homogenized first auction bid at bo1 = 0.40, which is slightly below the fifth percentile
of bo1, I derive each red-colored and black-colored estimate by plugging the bo2 values from the
y-axis into ξ̂l2(·; bo1) and ξ̂w2 (·; bo1). This produces covariate-free private values on the x-axis, v̂o2
and δo(ξ1(b

o
1), v

o
2)
∧

, each representing the value of a single box―unless otherwise stated, all values
refer to a single box.

Figure 10 displays the result following the second step of the estimation (namely, (ii)),
where the estimators here are ξ̂l2 and ξ̂w2 . To implement the third step (namely, (iii)), I need to
multiply the homogenized values and bids by exp(z′β̂) to recover values and bids that reflect
the influence of the covariate z. To this end, I present the mean, standard deviation, and
5th/50th/95th percentiles for each exp(Z ′

1β̂) and exp(Z ′
2β̂).

38Refer to Silverman (1986) for details on the rule of thumb. In the estimation, I adjusted the bandwidth
from the value recommended by the rule of thumb, as my estimators are multi-step, which differs from the one-
step estimator assumed by Silverman (1986). The purpose of the adjustment was to narrow the width of the
confidence interval.
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• Effect of covariates in the first auction (exp(Z ′
1β̂)) : $14.5, $5.7, $7.1/13.6/25.4,

• Effect of covariates in the second auction (exp(Z ′
2β̂)): $13.7, $5.7, $6.5/12.7/24.6.

To construct Figure 11 from Figure 10, I assume that the effects of covariates in both the first
and second auction are at their median values. I then multiply both x- and y-axes of Figure
10 by the median of exp(Z ′

2β̂) to obtain Figure 11 and multiply bo1 = 0.40 by the median of
exp(Z ′

1β̂) to calculate Bmax
1 = $5.4, as noted in the caption of Figure 11.

I discuss three key points from Figures 10 and 11.
First, both estimators, ξ̂l2(·, bo1) and ξ̂w2 (·, bo1), in Figure 10 are monotonic in the homogenized

second auction bid bo2, and D.4 confirms that this monotonicity holds even when bo1 ̸= 0.40.
Therefore, two of the four testable restrictions of the model, as stated in Theorem 1, are met.
The two remaining testable restrictions are: (a) whether the function ξ1 increases with the first
auction bid, which I do not examine in this paper39, and (b) whether a valid distribution is
formed from the right-hand side of equation (10), which holds when bo1 is set at 0.40, as discussed
in D.4.

Second, since three out of the four testable restrictions of the model are met when bo1 is set
to 0.40, I proceed under the assumption that all four restrictions in Theorem 1 are satisfied. As
discussed in Corollary 1, if all the restrictions in Theorem 1 are satisfied, then the inverses of both
estimators, ξ̂l2(·, bo1) and ξ̂w2 (·, bo1), correspond to the estimators of the second auction equilibrium
bidding strategies, sl2(·, ξ1(bo1)) and sw2 (ξ1(b

o
1), ·). Each strategy represents, respectively, the first

auction loser who observed the winning bid of bo1 and the winner whose first auction bid is bo1.
Lastly, Figure 11 illustrates the second auction bidding strategies, incorporating the effect

of covariates, with the covariate effect in both auctions set to its median value. This setup
can be interpreted as both the first and second objects being of median quality. Accordingly,
Bmax

1 = $5.4 reflects that the winning bid for a median-quality first object was $5.4. The
red-colored and black-colored estimates in the figure represent the bidding strategies for the
median-quality second object: ŝl2(·, ξ1($5.4); $12.7) and ŝw2 (ξ1($5.4), ·; $12.7), where $12.7 is the
median of exp(Z ′

2β̂). The support for each bidding strategies is given by v̂2 ∈ [$0, $124] and
δ(ξ1($5.4), v2)
∧

∈ [$0, $82].
All the estimation results presented below also follow steps (i)–(iii) of bid homogenization:

namely, I use 953 homogenized auction pairs to estimate the homogenized parameters, then
dehomogenize either the bids or the estimated parameters by multiplying by the median of
exp(Z ′

1β̂) or exp(Z ′
2β̂)―for simplicity, I omit these two notations in the following results.

39Given that the bidding densities I am using are unimodal, as shown in Figure 8, I expect this restriction to
be satisfied.
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Fig. 12 – Estimated complementarity func-
tion given B1 = $5.4, namely δ̂(ξ1(B1), ·):
X-axis - v̂2
Y-axis - δ(ξ1(B1), v2)
∧

Fig. 13 – Value distribution of the second ob-
ject for the first auction winner (black) and
loser (red), given B1 = $5.4:

X-axis - δ(ξ1(B1), v2)
∧

for black, v̂2 for red
Y-axis - Cumulative Probability

Figure 12 displays the estimated complementarity function, δ̂(ξ1(5.4), ·). As discussed in
Sections 3 and 4, this function is identified and estimated by comparing the percentiles of the
two estimators, P̂r[V2 ≤ ·|V1 = ξ1($5.4)] and P̂r[δ(V1, V2) ≤ ·|V1 = ξ1($5.4)], which correspond to
the red-colored and black-colored estimates in Figure 13. The values $24.9 and $14.6 correspond
to the 80th percentiles of each estimator, respectively, with the estimands of both estimators
given by equations (14) and (15)―the closed form expressions for each estimator can be found
in C.8 and C.7.

We observe a substitutability between the first and second objects in Figure 12, as the median
estimate falls below the 45-degree line. For example, if the standalone value of the second object
is $24.9, then winning the first object valued at ξ1($5.4) reduces the second object’s value to
$14.6. The extent of this reduction, or adjustment, varies by where v2 lies. This variation
shows that any two bidders with different values for the objects experience different degree of
complementarity between the objects, as emphasized in Introduction.

Figure 13 shows that the median of P̂r[V2 ≤ ·|V1 = ξ1($5.4)] first-order stochastically dom-
inates that of P̂r[δ(V1, V2) ≤ ·|V1 = ξ1($5.4)]. This indicates that, given both the first auction
loser and the winner bid B1 = $5.4, the value of the second object for the first auction loser
stochastically dominates that for the first auction winner.

According to one of the definitions40 introduced in Maskin and Riley (2000a), the stochastic
dominance observed in Figure 13 implies that, in the second auction, the first auction loser
is a strong bidder, while the first auction winner is a weak bidder. Equation (3.11) of their
paper predicts that the strong bidder shades more than the weak bidder, aligning with the
findings in Figure 11, where the first auction loser’s bidding strategy lies below that of the first
auction winner. Furthermore, Proposition 3.3 in their paper predicts that the equilibrium bid
distribution of the strong bidder first-order stochastically dominates that of the weak bidder.
In our context, this implies that the first auction loser’s bidding density in the second auction
first-order stochastically dominates that of the first auction winner―Figure 14 confirms that

40Refer to equation (3.1) of Maskin and Riley (2000a).
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this prediction also holds in our context.

Fig. 14 – Unconditional density of second
auction winning bid for first auction winner
and loser from 953 auction pairs:
X-axis - Winning bid of the second auction

for the first auction winner (solid) and loser
(dash-dotted)
Y-axis - Density

Fig. 15 – Weighted average winning bid per
order bin for the five most-auctioned type-
size-grade-origin combinations; ‘H’ denotes
highest grade, and ‘CS’ and ‘CJ’ represent
Cheongsong and Chungju:
X-axis - Auction order bins
Y-axis - Weighted average winning bid (with

weights based on the number of boxes)

To summarize, the estimates shown in Figures 11 and 13, along with the descriptive statistics
in Figure 14, align with the theoretical predictions made by Maskin and Riley (2000a) for an
asymmetric auction. In our case, the second auction represents the asymmetric auction, with
the first auction loser and winner corresponding to the strong and weak types, respectively.

In the next subsection, I discuss the problems associated with the current auction design
and propose an alternative auction design, the Product-Mix Auction, to address these issues. I
will use my estimator to demonstrate the outcomes under this new design.

5.4 Product-Mix Auction

The current auction design used in Garak Market is a sequential first-price sealed-bid auction
with partial disclosure. For example, if one of the auction houses were to sell 100 objects,
it would conduct 100 first-price auctions. A single object being sold in each auction might
be described as ‘three boxes of high-graded Aori apples, with each box containing 40 apples
sourced from a farmer in Yesan,’ as illustrated in Table 1. Furthermore, each of the 100 first-
price auctions only discloses the winning bid and the identities of the winners to the bidders,
as shown in Figure 7.

As shown in Figure 15, in the current design, the winning bids for a certain category oscillate
and decline as the auction progresses throughout a given day. Each category in the figure’s
legend represents one of the five most frequently41 auctioned type-size-grade-origin combinations
out of a total of 87,349 auctions: these categories account for 1,949, 1,555, 1,453, 1,221, and

41These five categories are actually the second, fourth, fifth, seventh, and eighth most frequent combinations.
The remaining combinations (first, third, and sixth) do not include size information, which is why they were
excluded.
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1,177 auctions, respectively. Each auction within a category was assigned to one of twenty
order bins based on its sequence within a given day-house combination42. The weighted average
winning bid was then calculated for each order bin, with the weights determined by the number
of boxes in each auction within the bin.

D.1.6 presents variations of Figure 15 by changing the number of order bins from 20 to 10
or 30 and also using the simple average winning bid instead of the weighted average; still, the
oscillatory and decreasing patterns are found.

An oscillatory winning bid implies that the same product would receive a higher winning
bid if auctioned at a peak and a lower winning bid if auctioned at a trough. This situation
disadvantages farmers whose products are auctioned during trough periods, which conflicts with
the spirit of Article 123 (4) of the Constitution of the Republic of Korea, mandating that the
government endeavor to protect farmers’ interests.

To this end, the government has pursued, among other policies, standardizing the quality
of produce across farmers and locations, aiming to reduce the occurrence of peaks and troughs
in the current auction. However, Milgrom and Weber (1999) and Krishna (2010b) predict that
even with this standardization, the peaks and troughs will not completely disappear, as the path
of winning bids is expected to follow a martingale path43 under the current auction design.

While the assumptions in these papers do not perfectly align with the context of the apple
auctions―since they assume identical goods and bidders with unit demand, whereas apples
within a category in Figure 15 are not exactly identical, and bidders in apple auctions often
participate in multiple auctions―the key similarity is that goods are sold one at a time known
as sequential sales. Sequential sales are known to result in varying winning bids for identical
objects, as shown44 in Milgrom and Weber (1999), and to prompt bidders to speculate about
future prices, leading to less efficient auction outcomes (Ausubel and Cramton (2008)).

Among the recommendations made in various reports (D.1.5), changing the sequential nature
of the current design has not been considered. To this end, I propose that policymakers consider
an auction design called the Product-Mix Auction (hereafter referred to as the alternative
auction), which is used by the Bank of England and the Icelandic government. The details of
this alternative auction design are available in Klemperer (2013a) and Klemperer (2018), while
Baldwin et al. (2023) discusses the computational aspects of the design, such as the optimal
tie-breaking rule.

Using the example from the first paragraph of this subsection, this alternative auction is a
simultaneous single-round auction, as it conducts auction once to sell 100 objects, and a uniform-
price auction, meaning that if 60 of them belong to a category named A and 40 belong to a
category named B, it determines a single clearing price for each category. Therefore, a farmer

42For example, 1,949 auctions in the category ‘Mishima,40,H,CS’ were distributed across 20 order bins as
follows: 297/56/70/101/79/64/89/94/59/136/33/105/48/98/99/81/55/79/47/259. The large number of auc-
tions in the first and last bins is due to some day-house combinations having only two or three auctions for
‘Mishima,40,H,CS.’ The weighted average winning bid for each bin was calculated based on the number of boxes
in each auction within the bin.

43In the context of auctions, this implies that the expected winning bid of the next auction equals the winning
bid of the current auction. A martingale path indicates that the declining trend will vanish, but oscillations will
persist.

44In 1981, RCA sold its seven transponders, deemed identical, one at a time through English auctions con-
ducted by Sotheby’s. The winning bids were $14.4, $14.1, $13.7, $13.5, $12.5, $10.7, and $11.2 million.
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selling products in Category A need not worry about whether his products will be auctioned
at a peak or trough. Furthermore, the alternative auction determines the clearing price in a
way that reduces bid shading, thereby protecting farmers’ interests; bid shading or demand
reduction by bidders in uniform-price auctions are well-known practices, and for details, refer
to Ausubel et al. (2014) and Kaplan and Zamir (2015)45.

I first outline the rules of this alternative auction, then select apple auctions held on February
12, 2022, at the Seoul auction house to demonstrate its outcome, and lastly provide additional
details about this alternative auction.

The rules of this alternative auction are as follows, in the context of selling apples in two
categories, A and B ―D.3 provides additional details of this rule using another example.

• Step 1. Before the auction, the auctioneer announces the total number of boxes of apples
to be supplied across categories A and B.

• Step 2. Bidders submit their demand schedules for categories A and B, as they would in
a uniform-price auction.

• Step 3. Given the submitted demand schedules for categories A and B, the auctioneer
forms a single demand curve, where the x-axis represents the ratio of the number of boxes
in Category A to Category B, and the y-axis represents the ratio of bids per box in
Category A to Category B.

• Step 4. After observing the demand curve, the auctioneer determines the ratio of the
number of boxes in Category A to Category B to achieve the competitive equilibrium
clearing price for each category. In making this decision, the auctioneer adheres to the
total number of boxes announced in Step 1.

These four steps constitute the implementation of the alternative auction design. The reason
that bidders in this auction engage in less bid-shading, to the extent that they are known to bid
approximately truthfully (Grace (2024)), relates to Steps 1 and 4. In Step 1, bidders cannot
perfectly forecast how many boxes of apples will be supplied for each category, and in Step 4,
the auctioneer decides the supply of boxes for each category after observing bidders’ demands.
Under these steps, a bidder understands that bid-shading in one category will not necessarily
lower its clearing price. This is because the single demand curve in Step 4 indicates that the
final clearing price and resulting quantity for one category depend on the submitted demand
schedules for the other category.

An example of a single demand curve is depicted as the blue-dotted curve in Figure 16.
45Ausubel et al. (2014) finds evidence of demand reduction and the possible presence of inefficient allocation

in uniform-price auctions, though these findings vary slightly across settings and assumptions. Chapter 7.3 of
Kaplan and Zamir (2015) points out that, typically, the uniform-price auction is subject to inefficient allocation
and manipulative bidding.
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Fig. 16 – Predicted outcome of apple auction at Seoul
auction house on February 12, 2022, using Product-Mix
Auction:
Categories - Myanmar Large apples and Myanmar

Small apples from Cheongsong
X-axis - Ratio of number of boxes
Y-axis - Ratio of uniform clearing price per box

Fig. 17 – Predicted outcome of apple auc-
tion at Seoul auction house on February 12,
2022, using Product-Mix Auction with a non-
vertical supply curve; the shaded region cor-
responds to the demand curve in Figure 16:
The categories, X-axis, and Y-axis match

those in Figure 16.

The demand curve represents what would have happened if the Seoul auction house had
implemented the Product-Mix Auction for selling apples on February 12, 2022. As shown in
Table 4 below, twelve apple auctions were sequentially conducted, with apples in each auction
being of the Myanmar type and originating from the same place. The Size column (col. (4))
shows the number of apples inside a single box; as this number decreases, the size of each apple
inside the box increases. Therefore, if this number was less than or equal to 30, I categorized the
corresponding apples as Large (col. (7)) and as Small otherwise, thereby yielding two categories.
Thus, categories A and B in the previous example correspond to Large apples and Small apples,
respectively.

The total number of boxes supplied (col. (2)) was 28946. If the auctioneer had declared in
Step 1 that he would supply this total, then, as stated in Step 4, the boxes allocated to each
category must add up to 289. This is why the ratio on the x-axis of Figure 16 always sums to
289 (e.g., 34/255 and 40/249). If the auctioneer determined, after forming and observing this
demand curve, that it was optimal to supply 34 boxes of Large apples and 255 boxes of Small
apples, then the equilibrium clearing price per box would be $18.0 for Large apples and $17.5
for Small apples.

Thus, under the Product-Mix Auction, farmers selling Large apples or Small apples receive
$18.0 or $17.5 per box, respectively, for the quantities they requested. With this alternative
design, farmers no longer need to worry that their produce might be auctioned at the trough
of the oscillation seen in the current sequential auction format, as illustrated in Figure 15.
Furthermore, because the alternative design is known to be robust against demand reduction,
the clearing prices for each category can be thought of as the maximum price that can be
attained in a uniform-price auction.

The reason the supply curve (red solid line) in Figure 16 is vertical is that, in the current
46As noted in Table 4, I excluded the 11 boxes from the first auction in the summation.
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institutional setting of Garak Market, the auctioneer cannot adjust the ratio of boxes between
Large apples and Small apples. The numbers 34 and 255 represent the total number of boxes
(col. (2)) for Large apples and Small apples, respectively. If the institutional setting were to
change, allowing the auctioneer to adjust the ratio of boxes, the supply curve would no longer be
vertical. This scenario is illustrated in Figure 17, where curve A and curve B represent supply
curves under different settings, each leading to different equilibrium price vectors; the shaded
region in Figure 17 corresponds to the demand curve in Figure 16.

Below, I describe how I obtained the demand curve, which is derived from the sixth column
(col. (6)) of the table.

Table 4: Apple Auctions on February 12, 2022 at Seoul Auction House

Winning Bid
Per box($)

(1)

No.of
Boxes
(2)

Winner
ID
(3)

Size

(4)

exp(Z ′β̂)
($)
(5)

Estimated Private
Values Per box ($)

(6)

Binary
Size
(7)

1 28.5 11 4728 25 23.3 - -
2 20.0 11 4507 30 19.5 23.4, 21.4, 18.0, 16.5, 15.0 Large
3 19.2 37 4765 40 17.6 26.3, 14.1, 13.9, 12.4, 5.4 Small
4 16.9 30 4303 40 17.0 21.1, 18.0, 17.5, 16.1, 12.6 Small
5 13.8 46 4266 50 13.5 18.4, 15.6, 12.2, 6.1, 6.0 Small
6 10.0 12 4266 50 11.7 12.1, 10.4, 7.9, 7.1, 6.5 Small
7 13.8 16 4266 25 22.0 17.0, 15.7, 14.2, 9.3, 8.3 Large
8 13.8 7 4306 30 17.8 18.1, 13.9, 8.8, 7.2, 2.5 Large
9 13.8 48 4781 40 17.0 18.5, 17.6, 15.7, 11.3, 10.4 Small
10 10.0 22 4306 40 15.2 12.6, 11.2, 9.5, 5.4, 4.2 Small
11 8.5 46 4266 50 12.5 11.0, 5.1, 4.5, 2.6, 1.8 Small
12 7.7 14 4266 50 10.9 10.0, 9.0, 6.2, 3.4, 1.5 Small
Note: The Seoul auction house conducted twelve auctions on February 12, 2022, which is why there are
twelve rows. The apples sold in each auction were all of the Myanmar variety and came from Cheongsong.
As discussed in Table 1, the fourth column denotes the number of apples inside a box. The larger this
number, the smaller each individual apple; therefore, when the value in the fourth column was less
than or equal to 30, I defined the apples as Large in the seventh column, and as Small otherwise. The
fifth column represents the covariate-explained value, as introduced in bid homogenization. The sixth
column displays the estimated private values of the bidders, which incorporate the effects of covariates,
as all estimates were obtained through steps (i)-(iii) of the bid homogenization process. The sixth
column of the first auction remains vacant because the required estimators, ξ̂1 and F̂1, are still being
evaluated for their performance. Thus, I discard the first row when constructing the demand curve in
Figure 16, which is also why I leave the seventh column of the first row vacant. If the price per box for
Large apples is $18.0 and the price per box for Small apples is $17.5, bidders with values corresponding
to any of the bolded numbers in the sixth column will be willing to pay these prices and purchase the
quantities indicated in the second column.

Recalling that the number of bidders in each auction is not specified in the dataset, and that
three to seven bidders are known to participate in each auction, I assumed that five bidders―
the median number―attended each auction. This assumption explains why there are five values
for each auction in the sixth column.

In the Product-Mix Auction, because no bidder is guaranteed any apples when submitting
their demand schedule in Step 2, a bidder’s value for either Large or Small apples must be
independent of the complementarity function, δ(·, ·). This independence supports the use of
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estimators that remove the effect of complementarity when estimating the values of bidders in
the sixth column, such as ξ̂l2(b2, b

max
1 ) and P̂r[V2 ≤ ·|B1 ≤ bmax

1 ], which I describe in the next
paragraph.

Focusing on the last row, the values―10.0, 9.0, 6.2, 3.4, 1.5―were estimated as follows:
the italicized value (10.0) was obtained by applying ξ̂l2(b2, b

max
1 ), where b2 is 7.7 (last row, col.

(1)) and bmax
1 is 8.5 (eleventh row, col. (1)). The remaining four values were independently

drawn from P̂r[V2 ≤ ·|B1 ≤ bmax
1 ]47, whose estimand is one of the components of another value

distribution (14). I repeated this backward approach for each pair of auctions from the eleventh
to the second, with all estimates incorporating the effect of covariates (col. (5)), as each estimate
underwent steps (i)-(iii) of the bid homogenization process.

The sixth column of the first auction remains vacant as the required estimators, ξ̂1 and
F̂1, are still being evaluated for their performance. Therefore, excluding the first auction, the
demand curve shown in Figures 16 and 17 was derived under the assumption that bidders bid
their values (i.e., the values estimated in the sixth column), as truthful bidding is considered a
good approximation in the Product-Mix Auction.

For example, if the price per box for Large apples is $18.0 and the price per box for Small
apples is $17.5, bidders with values corresponding to any of the bolded numbers in the sixth
column will be willing to pay these prices and purchase the quantities indicated in the second
column. As a result, for Large apples, between 29 and 40 boxes are demanded48, with the
difference of 11 boxes arising because one of the revealed values in the second row of the sixth
column, namely 18.0, indicates that a bidder with this value is indifferent between having
zero boxes and all eleven boxes. Similarly, for Small apples, between 239 and 269 boxes are
demanded49, with the difference of 30 boxes occurring because one of the revealed values in
the fourth row of the sixth column, namely 17.5, indicates that a bidder with this value is
indifferent between having zero boxes and all thirty boxes. Consequently, when the price ratio
on the y-axis is $18.0/$17.5 in Figure 16, the auctioneer observes a flat demand between 29/260
and 40/249. By continually adjusting the price ratio and using the values in the sixth column,
while maintaining the total number of boxes at 289, the auctioneer can derive the demand curve
shown in Figure 17. The endpoint of the x-axis is 170/119 because the total number of boxes
demanded for Large apples is at most 17050.

Lastly, I discuss two key details of the Product-Mix Auction.
First, replacing Large and Small apples with Strong and Weak collaterals results in the

Product-Mix Auction used by the Bank of England. In its Indexed Long-Term Repo operations,
the Bank provides reserves to counterparties by purchasing either Strong collateral (e.g., highly
liquid sovereign securities) or Weak collateral (e.g., mortgage-backed bonds). The aim of the
Product-Mix Auction is to find a competitive equilibrium for two non-complementary products

47The closed-form expression is provided in C.8
48From the second row, 11 boxes (23.4), 11 boxes (21.4), and between 0 and 11 boxes (18.0) are demanded.

From the eighth row, 7 boxes (18.1) are demanded.
49From the third row, 37 boxes (26.3) are demanded. From the fourth row, 60 boxes (21.1 and 18.0) and

between 0 and 30 boxes (17.5) are demanded. From the fifth row, 46 boxes (18.4) are demanded. From the ninth
row, 96 boxes (18.5 and 17.6) are demanded.

50A total of 55 boxes (11 × 5) are demanded from the second row, 80 boxes (16 × 5) from the seventh row,
and 35 boxes (7× 5) from the eighth row.
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(in our case, Large apples and Small apples) simultaneously. Extending this to more than two
products, such as three, involves grouping two of the products together, comparing that group
with the third product, and then comparing the two products within the group51.

Lastly, as Palacios-Huerta et al. (2024) points out, a sizable number of auction designs exist,
but only a few are used in practice52. The Product-Mix Auction is one of these practical designs,
and because it is not a multi-round auction, it concludes quickly, allowing bidders to continue
engaging in daily transactions with their customers; as discussed in subsection 5.3, 90% of the
fruits they win are delivered to customers on the same day. However, changing or introducing
a new auction design should be approached with caution. This is exemplified by the Federal
Communications Commission when it devised the Simultaneous Multiple-Round Auction53.

6 Conclusion

I focus on sequential first-price auctions with partial disclosure, where each auction sells a single
object at a time, and only the winning bid and the winner’s identity are disclosed for that object.

In my model, this disclosure influences a bidder’s decision when placing a bid. His decision
also considers the complementarity between objects, captured by a function δ. Unlike in other
studies, the output of this function varies not only by auction covariates but also by the bidder’s
own value for the objects.

Under the Independent Private Value paradigm with a two-period model, I demonstrate
that, even with a dataset containing only winning bids and winner identities, an analyst can
nonparametrically identify and separately estimate the complementarity and correlation across
objects, as well as bidders’ bidding strategies. This result shows that the indirect approach of
Guerre et al. (2000) can be extended beyond a single period to cases where bidders have multi-
unit demand. Extending the model to more than two periods while ensuring it remains testable
through the bid distribution, and developing estimators for the parameters of this extended
model, are focuses of my future work.

In the Application section, I use my model and estimator to propose using an alterna-
tive auction design, the Product-Mix Auction, to help the government achieve its objectives.
Other approaches could be explored to assess the effects of alternative designs: adopting a
model of asymmetric bidders (D.2), devising a model54 that incorporates risk-averse or budget-
constrained bidders, applying machine learning techniques55, or conducting field or lab experi-
ments, as in List (2000), Ausubel et al. (2013) or Katok (2013) are a few examples.

51Refer to Frost et al. (2015)
52As Palacios-Huerta et al. (2024) notes, more than 8,000 papers discuss combinatorial auctions, with most

proposing a variation. However, only three variations are commonly used in practice: Sealed-bid, Multi-round,
and Combinatorial Clock.

53Federal Communications Commission (1994) notes that 222 comments and 169 reply comments were re-
ceived.

54Such models would impose additional testable restrictions on the bid distribution if one were to continue
using the approach of Guerre et al. (2000).

55Refer to the conference titled New Directions in Market Design, held from May 11–12, 2023, at the National
Bureau of Economic Research.

33



References
Aguirregabiria, Victor, Allan Collard-Wexler, and Stphen P. Ryan (2021): “Dy-
namic Games in Empirical Industrial Organization,” in Handbook of Industrial Organization,
ed. by Kate Ho, Ali Hortaçsu, and Alessandro Lizzeri, North-Holland, vol. 5, 225–343. 2

Altmann, Sam (2024a): “Choice, Welfare, and Market Design: An Empirical Investigation of
Feeding America’s Choice System,” Working Paper. 2, 4

——— (2024b): “Identification and Estimation of a Dynamic Multi-Object Auction Model,”
Working Paper. 2, 4

Arsenault-Morin, Alex P., Hayri A. Arslan, and Matthew L. Gentry (2022): “On
the Timing of Auctions: The Effects of Complementarities on Bidding, Participation, and
Welfare,” Working Paper. 2

Ashenfelter, Orley (1989): “How Auctions Work for Wine and Art,” Journal of Economic
Perspectives, 3, 23–36. 5, 81

Asker, John (2010): “A Study of the Internal Organization of a Bidding Cartel,” American
Economic Review, 100, 724–762. 23, 103, 104

Asker, John, Chaim Fershtman, Jihye Jeon, and Ariel Pakes (2020): “A computa-
tional framework for analyzing dynamic auctions: The market impact of information sharing,”
RAND Journal of Economics, 51, 805–839. 2

Athey, Susan, Jonathan Levin, and Enrique Seira (2011): “Comparing open and Sealed
Bid Auctions: Evidence from Timber Auctions,” The Quarterly Journal of Economics, 126,
207–257. 1, 22, 91

Ausubel, Larence M., Peter Crampton, Emel Filiz-Ozbay, Nathaniel Higgins,
Erkut Y. Ozbay, and Andrew Stocking (2013): “Common-Value Auctions with Liq-
uidity Needs: An Experimental Test of a Troubled-Assets Reverse Auction,” in Handbook
of Market Design, ed. by Nir Vulkan, Alvin E.Roth, and Zvika Neeman, Oxford University
Press, 489–554, 1 ed. 33

Ausubel, Lawrence M. and Peter Cramton (2008): “A Troubled Asset Reverse Auction,”
Working Paper. 28

Ausubel, Lawrence M., Peter Cramton, Marek Pycia, Marzena Rostek, and
Marek Weretka (2014): “Demand Reduction and Inefficiency in Multi-Unit Auctions,”
Review of Economic Studies, 81, 1366–1400. 1, 3, 29

Azacis, Helmuts (2020): “Information Disclosure by a Seller in Sequential First-Price Auc-
tions,” International Journal of Game Theory, 49, 411–444. 2

Backus, Matthew and Greg Lewis (2024): “Dynamic Demand Estimation in Auction
Markets,” Review of Economic Studies, 00, 1–36. 1

Baldwin, Elizabeth, Paul W. Goldberg, Paul Klemperer, and Edwin Lock (2023):
“Solving Strong-Substitutes Product-Mix Auctions,” Mathematics of Operations Research,
49, 1–33. 28

Bergemann, Dirk and Johannes Hörner (2018): “Should First-Price Auctions be Trans-
parent?” American Economic Journal: Microeconomics, 10, 177–218. 1, 2

34



Campo, Sandra, Isabelle Perrigne, and Quang Vuong (2003): “Asymmetry in First-
Price Auctions with Affiliated Private Values,” Journal of Applied Econometrics, 18, 179–207.
47

Choi, Jong Jae (2024): “Disentangling Affiliation and Synergy in First-Price Auctions under
Limited Disclosure,” Working Paper. 4

Compiani, Giovanni, Philip Haile, and Marcelo Sant’Anna (2020): “Common Val-
ues, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions,”
Journal of Political Economy, 128, 3872–3912. 103

Cramton, Peter, Samuel Dinkin, and Robert Wilson (2013): “Auctioning Rough Di-
amonds: A Competitive Sales Process for BHP Billiton’s Ekati Diamonds,” in Handbook of
Market Design, ed. by Nir Vulkan, Alvin E.Roth, and Zvika Neeman, Oxford University
Press, 299–322, 1 ed. 1

Donna, Javier D. and José-Antonio Espín-Sánchez (2018): “Complements and substi-
tutes in sequential auctions: the case of water auctions,” The RAND Journal of Economics,
49, 87–127. 2

Dufwenberg, Martin and Uri Gneezy (2013): “Information Disclosure in Auctions: An
Experiment,” in The Handbook of Market Design, ed. by Nir Vulkan, Alvin E. Roth, and
Zvika Neeman, Oxford University Press, 555–572, 1 ed. 1

Federal Communications Commission (1994): “Implementation of Section 309(j) of the
Communications Act-Competitive Bidding,” Last accessed 7 March 2023. 33

Frost, Tarkus, Nick Govier, and Tom Horn (2015): “Innovations in the Bank’s provision
of liquidity insurance via indexed Long-Term Repo (ILTR) operations,” Bank of England
Quarterly Bulletin, 55/2, 181–188. 33

Gentry, Matthew, Tatiana Komarova, and Pasquale Schiraldi (2023): “Preferences
and Performance in Simultaneous First-Price Auctions: A Structural Analysis,” Review of
Economic Studies, 90, 852–878. 1, 2

Gentry, Matthew and Tong Li (2014): “Identification in Auctions with Selective Entry,”
Econometrica, 82, 315–344. 22

Gimenes, Nathalie and Emmanuel Guerre (2020): “Quantile-regression methods for first-
price auctions,” Working Paper. 105

Grace, Charlotte (2024): “Competing models of the Bank of England’s liquidity auctions:
truthful bidding is a good approximation,” Staff Working Paper No. 1,061, Bank of England.
29, 92

Guerre, Emmanuel and Yao Luo (2022): “Nonparametric Identification of First-Price Auc-
tion with Unobserved Competition: A Density Discontinuity Framework,” Working Paper.
22

Guerre, Emmanuel, Isabelle Perrigne, and Quang Vuong (2000): “Optimal Nonpara-
metric Estimation of First-Price Auctions,” Econometrica, 68, 525–574. 2, 8, 33, 47

Haile, Philip A., Han Hong, and Matthew Shum (2003): “Nonparametric Tests for
Common Values at First-Price Sealed Bid Auctions,” Working Paper no. 10105, NBER,
Cambridge, MA. 103

35



Heckman, James J. (1981): “Heterogeneity and State Dependence,” in Studies in Labor
Markets, ed. by Sherwin Rosen, University of Chicago Press, 91–140, 1 ed. 1

Hendricks, Ken and Robert H. Porter (2007): “An Empirical Perspective on Auctions,”
in Handbook of Industrial Organization, ed. by Mark Armstrong and Robert H. Porter, North-
Holland, vol. 3, 2073–2143. 1

Hortaçsu, Ali and David McAdams (2010): “Mechanism Choice and Strategic Bidding in
Divisible Good Auctions: An Empirical Analysis of the Turkish Treasury Auction Market,”
Journal of Political Economy, 118, 833–865. 1

——— (2018): “Empirical Work on Auctions of Multiple Objects,” Journal of Economic Liter-
ature, 56, 157–184. 2

Hortaçsu, Ali and Isabelle Perrigne (2021): “Empirical Perspectives on Auctions,” in
Handbook of Industrial Organization, ed. by Kate Ho, Ali Hortaçsu, and Alessandro Lizzeri,
North-Holland, vol. 5, 81–175. 1

Jofre-Bonet, Mireira and Martin Pesendorfer (2003): “Estimation of a Dynamic Auc-
tion Game,” Econometrica, 71, 1443–1489. 1, 2, 91

Kannan, Karthik N. (2012): “Effects of Information Revelation Policies under Cost Uncer-
tainty,” Information Systems Research, 23, 75–92. 2

Kaplan, Todd R. and Shmuel Zamir (2015): “Advances in Auctions,” in Handbook of
Game Theory with Economic Applications, ed. by H. Peyton Young and Shmuel Zamir,
North-Holland, vol. 4, 381–453. 1, 3, 29

Katok, Elena (2013): “Experiments with Buyer-Determined Procurement Auctions,” in
Handbook of Market Design, ed. by Nir Vulkan, Alvin E.Roth, and Zvika Neeman, Oxford
University Press, 573–586, 1 ed. 33

Kim, Eun-Sung (2017): “Senses and artifacts in market transactions: the Korean case of
agricultural produce auctions,” Journal of Cultural Economy, 10, 524–540. 20

Kim, Nayul (2024): “Dynamic Evaluation of Preference Program in Public Procurement Mar-
ket,” Working Paper. 1, 2

Klemperer, Paul (1999): “Auction Theory: A Guide To The Literature,” Journal of Eco-
nomic Surveys, 13, 227–286. 47

——— (2000): “Why Every Economist Should Learn Some Auction Theory,” Working Paper,
SSRN. 1

——— (2013a): “The Product-Mix Auction: A New Auction Design for Differentiated Goods,”
in Handbook of Market Design, ed. by Nir Vulkan, Alvin E.Roth, and Zvika Neeman, Oxford
University Press, 269–281, 1 ed. 28

——— (2013b): “Using and Abusing Auction Theory,” in The Handbook of Market Design, ed.
by Nir Vulkan, Alvin E. Roth, and Zvika Neeman, Oxford University Press, 62–89, 1 ed. 1

——— (2018): “Product-Mix Auctions,” Nuffield College Working Paper 2018-W07. 28, 91,
100

Kong, Yunmi (2021): “Sequential Auctions with Synergy and Affiliation across Auctions,”
Journal of Political Economy, 129, 148–181. 2, 5, 105

36

http://dx.doi.org/10.2139/ssrn.241350


Krasnokutskaya, Elena (2011): “Identification and Estimation of Auction Models with
Unobserved Heterogeneity,” Review of Economic Studies, 78, 293–327. 23

Krishna, Vijay (2010a): Auction theory, Academic Press, 2 ed. 1

——— (2010b): Auction theory, Academic Press, chap. 15, 2 ed. 3, 28, 81

Laffont, Jean-Jacques and Jean Tirole (1988): “The Dynamics of Incentive Contracts,”
Econometrica, 56, 1153–1175. 5

Laffont, Jean-Jacques and Quang Vuong (1996): “Structural Analysis of Auction Data,”
The American Economic Review, 86, 414–420. 47

Levin, Dan and James L. Smith (1994): “Equilibrium in Auctions with Entry,” The Amer-
ican Economic Review, 84, 585–599. 22

Lewbel, Arthur (2019): “The Identification Zoo: Meanings of Identification in Economet-
rics,” Journal of Economic Literature, 57, 835–903. 13

Li, Tong, Isabelle Perrigne, and Quang Vuong (2002): “Structural estimation of the
affiliated private value auction model,” RAND Journal of Economics, 33, 171–193. 47

Li, Tong and Bingyu Zhang (2015): “Affiliation and Entry in First-Price Auctions with
Heterogeneous Bidders: An Analysis of Merger Effects,” American Economic Journal: Mi-
croeconomics, 7, 188–214. 22

Li, Tong and Xiaoyong Zheng (2012): “Information acquisition and/or bid preparation: A
structural analysis of entry and bidding in timber sale auctions,” Journal of Econometrics,
168, 29–46. 22

List, John A. (2000): “Demand Reduction in Multiunit Auctions: Evidence from a Sportscard
Field Experiment,” The American Economic Review, 90, 961–972. 33

Marmer, Vadim, Artyom Shneyerov, and Pai Xu (2013): “What model for entry in
first-price auctions? A nonparametric approach,” Journal of Econometrics, 176, 46–58. 22

Maskin, Eric and John Riley (2000a): “Asymmetric Auctions,” Review of Economic Stud-
ies, 67, 413–438. 2, 3, 26, 27

——— (2000b): “Equilibrium in Sealed High Bid Auctions,” Review of Economic Studies, 67,
439–454. 1

——— (2003): “Uniqueness of equilibrium in sealed high-bid auctions,” Games and Economic
Behavior, 45, 395–409. 1

Matzkin, Rosa L. (2003): “Nonparametric Estimation of Nonadditive Random Functions,”
Econometrica, 71, 1339–1375. 4

Mcafee, R. Preston and Daniel Vincent (1993): “The Declining Price Anomaly,” Journal
of Economic Theory, 60, 191–212. 1, 20, 81

Milgrom, Paul and John Roberts (1982): “Limit Pricing and Entry under Incomplete
Information: An Equilibrium Analysis,” Econometrica, 50, 443–459. 47

Milgrom, Paul R. and Robert J. Weber (1982): “A Theory of Auctions and Competitive
Bidding,” Econometrica, 50, 1089–1122. 1

——— (1999): “A Theory of Auctions and Competitive Bidding, II,” in The Economic Theory
of Auctions, ed. by Paul Klemperer, Edward Elgar Publishing, 1 ed. 2, 3, 5, 28

37



Myers, Geoffrey (2023): Spectrum Auctions: Designing markets to benefit the public, in-
dustry, and the economy, LSE Press, 1 ed. 1

Ortega-Reichert, Armando (1968): “Models for Competitive Bidding Under Uncertainty,”
Stanford University PhD thesis (and Technical Report No. 8, Department of Operations
Research, Stanford University). 5, 39, 47

Palacios-Huerta, Ignacio, David C. Parkes, and Richard Steinberg (2024): “Com-
binatorial Auctions in Practice,” Journal of Economic Literature, 62, 517–553. 33

Perrigne, Isabelle and Quang Vuong (2023): “Econometric Methods for Auctions,” in
Handbook of Econometrics: Volume 7b, ed. by Steven Durlauf, Lars Peter Hansen, and
James J. Heckman, North-Holland, 7 ed. 4, 47, 103

Rao, B. L. S. Prakasa (1992): Identifiability in Stochastic Models: Characterization of
Probability Distributions, Academic Press. 11, 49

Samuelson, William F. (1985): “Competitive Bidding with Entry Costs,” Economic Letters,
17, 53–57. 22

Sant’Anna, Marcelo (2018): “Empirical Analysis of Scoring Auctions for Oil and Gas,”
Working Paper. 23, 103, 104

Scott, David W. (2015): Multivariate Density Estimation, Wiley, 2 ed. 56

Silva, Dakshina G. De and Benjamin V. Rosa (2023): “Winner’s Curse and Entry in
Highway Procurement,” Working Paper. 1

Silverman, B.W. (1986): Density Estimation for Statistics and Data Analysis, Chapman and
Hall, chap. 4.3, 1 ed. 24, 56

Van Den Berg, Gerard J., Jan C. Van Ours, and Menno P. Pradhan (2001): “The
Declining Price Anomaly in Dutch Dutch Rose Auctions,” The American Economic Review,
91, 1055–1062. 81

Vulkan, Nir, Alvin E. Roth, and Zvika Neeman, eds. (2013): The Handbook of Market
Design, Oxford University Press, 1 ed. 1

Weber, Robert J. (1983): “Multi-Object Auctions,” in Auctions, Bidding, and Contract-
ing: Uses and Theory, ed. by Martin Shubik and Richard Engelbrecht-Wiggans, New York
University Press, 165–191, 1 ed. 47

38



Appendices

A Section 2, Model 41
A.1 Equivalence between Pr[Bmax

2,−i ≤ ·|Bmax
1,−i ≤ b̃1i, V1i = v1i, V2i = v2i] andGBl

2(b̃1i)
(·|B1 ≤

b̃1i)
I−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 Equivalence between Pr[Bmax
2,−i ≤ ·|B1j = bw1 , B1j ≥ B1k, k /∈ {i, j}, B1j ≥ b̃1i, V1i =

v1i, V2i = v2i] and Gw
2|1(·|b

w
1 )GBl

2(b
w
1 )(·|B1 ≤ bw1 )

I−2 . . . . . . . . . . . . . . . . . . 41
A.3 Equivalence between Pr[Bmax

1,−i ≤ b̃1i] and Pr[B1 ≤ b̃1i]
I−1 . . . . . . . . . . . . . . 42

A.4 Closed form expression for the continuation value of being the first auction winner
in the second auction, i.e., Vw(v1i, b̃1i) . . . . . . . . . . . . . . . . . . . . . . . . 42

A.5 Closed form expression for the continuation value of being the first auction loser
in the second auction, i.e., V l(v1i, b̃1i) . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.6 Detailed derivation of going from equation (7) to equation (8) . . . . . . . . . . . 44
A.7 Detailed derivation of equation (10) . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.8 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.9 IPV and other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.10 Ortega-Reichert (1968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Section 3, Identification 47
B.1 Derivation of equations (11)-(12) from the dataset, and Lemmas 1 and 2 . . . . . 47
B.2 Derivation of equation (13) from the dataset . . . . . . . . . . . . . . . . . . . . . 51
B.3 Derivation of equation (14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.4 Derivation of equation (15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.5 Alternative Identification Strategy for the function δ . . . . . . . . . . . . . . . . 53

C Section 4, Estimation and Monte Carlo 55
C.1 Bandwidth and the derivations of (17)-(19) . . . . . . . . . . . . . . . . . . . . . 55
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A Section 2, Model

A.1 Equivalence between Pr[Bmax
2,−i ≤ ·|Bmax

1,−i ≤ b̃1i, V1i = v1i, V2i = v2i] and GBl
2(b̃1i)

(·|B1 ≤
b̃1i)

I−1

[Back to ToC] Refer to the following equalities; b̃1i is equivalent to s̃1(v1i) where the strategy
s̃1 need not be the equilibrium strategy s1.

Pr
[
Bmax

2,−i ≤ · | Bmax
1,−i ≤ b̃1i, V1i = v1i, V2i = v2i

]
= Pr

[
sl2(V2j , s̃1(V1i)) ≤ ·, ∀j ̸= i | s1 (V1j) ≤ s̃1(V1i), ∀j ̸= i, V1i = v1i, V2i = v2i

]
=

Pr[sl2(V2j , s̃1(V1i)) ≤ ·, s1 (V1j) ≤ s̃1(V1i), ∀j ̸= i, V1i = v1i, V2i = v2i]

Pr[s1 (V1j) ≤ s̃1(V1i), ∀j ̸= i, V1i = v1i, V2i = v2i]
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Pr[sl2(V2j , b̃1i) ≤ ·, s1(V1j) ≤ b̃1i, ∀j ̸= i] Pr[V1i = v1i, V2i = v2i]

Pr[s1(V1j) ≤ b̃1i, ∀j ̸= i] Pr[V1i = v1i, V2i = v2i]

= Pr
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sl2(V2j , b̃1i) ≤ ·, ∀j ̸= i | s1(V1j) ≤ b̃1i, ∀j ̸= i
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j ̸=i

Pr
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Bl
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]I−1
≡ GBl

2(b̃1i)
(· | B1 ≤ b̃1i)

I−1,

in which the equalities hold by independence, symmetry, and by the assumption that the com-
petitors’ bids originate from equilibrium strategies; especially, the sixth equality uses symmetry.

A.2 Equivalence between Pr[Bmax
2,−i ≤ ·|B1j = bw1 , B1j ≥ B1k, k /∈ {i, j}, B1j ≥

b̃1i, V1i = v1i, V2i = v2i] and Gw
2|1(·|bw1 )GBl

2(b
w
1 )(·|B1 ≤ bw1 )

I−2

[Back to ToC] The following equalities also use independence, symmetry, and the notion that
the competitors’ bids come from equilibrium strategies.

Pr[Bmax
2,−i ≤ · | B1j = bw1 , B1j ≥ B1k, k /∈ {i, j}, B1j ≥ b̃1i, V1i = v1i, V2i = v2i]

= Pr
[
sw2 (V1j , V2j) ≤ ·, sl2(V2k, s1(V1j)) ≤ ·, k /∈ {i, j} |

s1(V1j) = bw1 , s1(V1j) ≥ s1(V1k), k /∈ {i, j}, s1(V1j) ≥ s̃1(V1i), V1i = v1i, V2i = v2i
]

=
Pr[sw2 (V1j , V2j) ≤ ·, s1(V1j) = bw1 , s

l
2(V2k, b

w
1 ) ≤ ·, bw1 ≥ s1(V1k), k /∈ {i, j}, bw1 ≥ b̃1i, V1i = v1i, V2i = v2i]

Pr[s1(V1j) = bw1 , b
w
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=
Pr[sw2 (V1j , V2j) ≤ ·, s1(V1j) = bw1 , s

l
2(V2k, b

w
1 ) ≤ ·, bw1 ≥ s1(V1k), k /∈ {i, j}]

Pr[s1(V1j) = bw1 , b
w
1 ≥ s1(V1k), k /∈ {i, j}]

× Pr[V1i = v1i, V2i = v2i]

Pr[V1i = v1i, V2i = v2i]

=
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∏
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= Pr [Bw
2 ≤ · | B1 = bw1 ] Pr[Bl

2(b
w
1 ) ≤ · | B1 ≤ bw1 ]

I−2 ≡ Gw
2|1(· | b

w
1 )GBl

2(bw1 )
(· | B1 ≤ bw1 )

I−2,

in which the third holds as long as bw1 ≥ b̃1i; the sixth equality equality holds by symmetry, and
it is this symmetry that makes the identity of the winner to be irrelevant.

A.3 Equivalence between Pr[Bmax
1,−i ≤ b̃1i] and Pr[B1 ≤ b̃1i]

I−1

[Back to ToC] Refer to the following equalities.

Pr[Bmax
1,−i ≤ b̃1i] = Pr[s1(V1j) ≤ b̃1i, ∀j ̸= i] =

∏
j ̸=i

Pr[s1(V1j) ≤ b̃1i]

= Pr[s1(V1) ≤ b̃1i]
I−1 = Pr[B1 ≤ b̃1i]

I−1,

in which the second equality holds by independence; the third holds by symmetry.

A.4 Closed form expression for the continuation value of being the first auc-
tion winner in the second auction, i.e., Vw(v1i, b̃1i)

[Back to ToC] Given that the optimal second auction bid b̃2i comes from equation (5), I can
plug this b̃2i into bidder i’s expected profit equation (3), which yields the following number,

(GBl
2(b̃1i)

(b̃2i|B1 ≤ b̃1i)
I−1)2

∂GBl
2(b̃1i)

(b̃2i|B1 ≤ b̃1i)I−1/∂b̃2i
.

This number expresses the maximum profit bidder i can enjoy in the second auction assuming
that he knows his v1i and v2i.
If bidder i knows his v1i but not v2i, then the maximum profit number becomes a random
variable where v2i is replaced with V2i — the strategy s̃w2 chosen by bidder i need not be
equilibrium strategy,

(GBl
2(b̃1i)

(s̃w2 (v1i, V2i)|B1 ≤ b̃1i)
I−1)2

∂GBl
2(b̃1i)

(s̃w2 (v1i, V2i)|B1 ≤ b̃1i)I−1/∂b̃2i
.

This new random variable is what bidder i faces in the first auction. Since bidder i draws his
value of the second object from the distribution F2|1(·|v1i), his continuation value Vw(v1i, b̃1i)

is calculated as follows.∫ v2

v2

(GBl
2(b̃1i)

(s̃w2 (v1i, x)|B1 ≤ b̃1i)
I−1)2

∂GBl
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=
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b2

(GBl
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∂GBl
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dPr[B̃w
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2 |V1

[
(GBl
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I−1)2

∂GBl
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(b2|B1 ≤ b̃1i)I−1/∂b̃2i

∣∣∣∣∣ V1 = v1i

]
≡ Vw(v1i, b̃1i), (20)
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in which the first equality holds because of F2|1(x|v1i) ≡ Pr[V2 ≤ x|V1 = v1i] = Pr[s̃w2 (v1i, V2) ≤
s̃w2 (v1i, x)|V1 = v1i] ≡ Pr[B̃w

2 ≤ b2|V1 = v1i] where I assume that the strategy s̃w2 , which bidder
i plays, is monotone — at the end of Section 2, I show that bidder i’s strategy s̃w2 must equal
monotone equilibrium strategy sw2 , so the assumption that s̃w2 being monotone makes no harm.

A.5 Closed form expression for the continuation value of being the first auc-
tion loser in the second auction, i.e., V l(v1i, b̃1i)

[Back to ToC] Given that the optimal second auction bid b̃2i comes from equation (6), I can
plug this b̃2i into bidder i’s expected profit equation (4), which yields the following number,

(Gw
2|1(b̃2i|b

w
1 )GBl

2(b
w
1 )(b̃2i|B1 ≤ bw1 )

I−2)2

∂(Gw
2|1(b̃2i|b

w
1 )GBl

2(b
w
1 )(b̃2i|B1 ≤ bw1 )

I−2)/∂b̃2i
.

This number expresses the maximum profit bidder i can enjoy in the second auction assuming
that he knows his v1i, v2i, and observes the winning bid of bw1 .
If bidder i knows his v1i but neither v2i nor bw1 , then the maximum profit number becomes a
function that takes V2i and Bw

1 as random variables — the strategy s̃l2 chosen by bidder i need
not be equilibrium strategy.

(Gw
2|1(s̃

l
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w
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l
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l
2(v1i, V2i, Bw

1 )|Bw
1 )GBl

2(B
w
1 )(s̃

l
2(v1i, V2i, Bw

1 )|B1 ≤ Bw
1 )

I−2)/∂b̃2i
.

This function of random variables, which are V2i and Bw
1 , is what bidder i faces in the first

auction. The distribution of both random variables given that bidder i’s situation is {Bmax
1,−i ≥

b̃1, V1i = v1i} as follows:

Pr
[
V2i ≤ v2, B

max
1,−i ≤ b | Bmax

1,−i ≥ b̃1i, V1i = v1i

]
=

Pr
[
V2i ≤ v2, V1i = v1i, B

max
1,−i ≤ b,Bmax

1,−i ≥ b̃1i

]
Pr
[
V1i = v1i, B

max
1,−i ≥ b̃1i

]
=

Pr
[
V2i ≤ v2, V1i = v1i,maxj ̸=i s1(V1j) ≤ b,maxj ̸=i s1(V1j) ≥ b̃1i

]
Pr
[
V1i = v1i,maxj ̸=i s1(V1j) ≥ b̃1i

]
= F2|1(v2 | v1i)Pr[max

j ̸=i
s1(V1j) ≤ b | max

j ̸=i
s1(V1j) ≥ b̃1i]

=
1

1− Pr[maxj ̸=i s1(V1j) ≤ b̃1i]
F2|1(v2|v1i)Pr[b̃1i ≤ max

j ̸=i
s1(V1j) ≤ b]

=
1

1−G1(b̃1i)I−1
F2|1(v2|v1i)Pr[Bmax

1,−i ≤ b]1[b̃1i ≤ Bmax
1,−i]

=
1

1−G1(b̃1i)I−1
F2|1(v2|v1i)G1(b)

I−11[b̃1i ≤ Bmax
1,−i]

in which the second equality holds by monotone strategy s1 played by I − 1 bidders; the third
holds by independence and symmetry; the fifth and the last hold by the equivalence between
Pr[Bmax

1,−i ≤ b] and Pr[B1 ≤ b]I−1.
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Given the conditional distribution of V2i and Bw
1 , I can calculate bidder i’s continuation value

V l(v1i, b̃1i) as follows.

1

1−G1(b̃1i)I−1

∫ b1

b̃1i

∫ v2

v2

[
(Gw

2|1(s̃
l
2(v1i, v, b)|b)GBl

2(b)
(s̃l2(v1i, v, b)|B1 ≤ b)I−2)2

∂(Gw
2|1(s̃

l
2(v1i, v, b)|b)GBl

2(b)
(s̃l2(v1i, v, b)|B1 ≤ b)I−2)/∂b̃2i

]
dF2|1(v|v1i)dG1(b)

I−1

=
1

1−G1(b̃1i)I−1

∫ b1

b̃1i

∫ b2

b2

[
(Gw

2|1(b2|b)GBl
2(b)

(b2|B1 ≤ b)I−2)2

∂(Gw
2|1(b2|b)GBl

2(b)
(b2|B1 ≤ b)I−2)/∂b̃2i

]
dPr[B̃l

2(b) ≤ b2|V1 = v1i]dG1(b)
I−1

≡ V l(v1i, b̃1i), (21)

in which the first equality holds because of F2|1(v|v1i) ≡ Pr[V2 ≤ v|V1 = v1i] = Pr[s̃l2(v1i, V2, b) ≤
s̃l2(v1i, v, b)|V1 = v1i] ≡ Pr[B̃l

2(b) ≤ b2|V1 = v1i] where I assume that the strategy s̃l2, which
bidder i plays, is monotone in V2 — at the end of Section 2, I show that bidder i’s strategy s̃l2
must equal monotone equilibrium strategy sl2, so the assumption that s̃l2 being monotone makes
no harm.

A.6 Detailed derivation of going from equation (7) to equation (8)

[Back to ToC] Taking the derivative of equation (7) with respect to b̃1i yields the following:

v1i = b̃1i +
1

I − 1

G1(b̃1i)

g1(b̃1i)
− Vw(v1i, b̃1i) + V l(v1i, b̃1i)

− ∂Vw(v1i, b̃1i)

∂b̃1i

G1(b̃1i)
I−1

dG1(b̃1i)I−1/db̃1i
− ∂V l(v1i, b̃1i)

∂b̃1i

[1−G1(b̃1i)
I−1]

dG1(b̃1i)I−1/db̃1i
,

in which we need derivatives of Vw (i.e., (20)) and V l (i.e., (21)) with respect to the first auction
bid b̃1i. These derivatives exploit the following equivalence the distribution GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)

has.

GBl
2(b̃1i)

(b2|B1 ≤ b̃1i) ≡ Pr[Bl
2(b̃1i) ≤ b2|B1 ≤ b̃1i]

= Pr[sl2(V2, b̃1i) ≤ b2|B1 ≤ b̃1i]

=
1

G1(b̃1i)

∫ b̃1i

b1

Pr[sl2(V2, b̃1i) ≤ b2, B1 = x]dx

=
1

G1(b̃1i)

∫ b̃1i

b1

Pr[sl2(V2, b̃1i) ≤ b2|B1 = x]dG1(x)

≡ 1

G1(b̃1i)

∫ b̃1i

b1

GBl
2(b̃1i)|B1

(b2|x)dG1(x), (22)

in which I use equilibrium strategy sl2 because a bidder other than bidder i plays equilibrium
strategy; the newly defined term, GBl

2(b̃1i)|B1
(b2|x), represents “the bid distribution of the first
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auction loser who had bid B1 = x but lost to the winning bid of b̃1i” — given this equivalence,
I introduce the following derivation.

∂GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−1

∂b̃1i
=

dG1(b̃1i)
I−1/db̃1i

G1(b̃1i)I−1
×GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)

I−2

g1(b̃1i)

∂
{
GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)G1(b̃1i)

}
∂b̃1i

−GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−1

,
which is used in the derivative of Vw(v1i, b̃1i) with respect to b̃1i as follows.

∂Vw(v1i, b̃1i)

∂b̃1i

=

∫ v2

v2

GBl
2(b̃1i)

(s̃w2 (v1i, x)|B1 ≤ b̃1i)
I−1

∂GBl
2(b̃1i)

(s̃w2 (v1i, x)|B1 ≤ b̃1i)I−1/∂b̃2i

∂GBl
2(b̃1i)

(s̃w2 (v1i, x)|B1 ≤ b̃1i)
I−1

∂b̃1i
dF2|1(x|v1i)

=

∫ b2

b2

GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−1

∂GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)I−1/∂b̃2i

∂GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−1

∂b̃1i
dPr[B̃w

2 ≤ b2|V1 = v1i]

=
dG1(b̃1i)

I−1/db̃1i

G1(b̃1i)I−1
×
∫ b2

b2

{
GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)

I−1

∂GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)I−1/∂b̃2i

[GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−2

g1(b̃1i)

∂
{
GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)G1(b̃1i)

}
∂b̃1i

−GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−1
]dPr[B̃w

2 ≤ b2|V1 = v1i],

in which the first equality holds by (i) taking the derivative of equation (3) with respect to b̃1i

and replacing b̃2i with the b̃2i from equation (5) (i.e., using Envelope Theorem), and by (ii)
noting that b̃2i is equivalent to s̃w2 (v1i, v2i) so that we have to take an expectation; the second
equality holds by the same logic used in equation (20).

The derivative of V l(i.e., (21)) with respect to the first auction bid b̃1i is as follows.

∂V l(v1i, b̃1i)

∂b̃1i

=
∂

∂b̃1i

(
1

1−G1(b̃1i)I−1

∫ b1

b̃1i

∫ b2

b2

[
(Gw

2|1(b2|b)GBl
2(b)

(b2|B1 ≤ b)I−2)2

∂(Gw
2|1(b2|b)GBl

2(b)
(b2|B1 ≤ b)I−2)/∂b̃2i

]
dPr[B̃l

2(b) ≤ b2|V1 = v1i]dG1(b)
I−1

)

=

(
∂

∂b̃1i

(
1

1−G1(b̃1i)I−1

))∫ b1

b̃1i

∫ b2

b2

[
(Gw

2|1(b2|b)GBl
2(b)

(b2|B1 ≤ b)I−2)2

∂(Gw
2|1(b2|b)GBl

2(b)
(b2|B1 ≤ b)I−2)/∂b̃2i

]
dPr[B̃l

2(b) ≤ b2|V1 = v1i]dG1(b)
I−1

− dG1(b̃1i)
I−1/db̃1i

1−G1(b̃1i)I−1

∫ b2

b2

[
(Gw

2|1(b2|b̃1i)GBl
2(b̃1i)

(b2|B1 ≤ b̃1i)
I−2)2

∂(Gw
2|1(b2|b̃1i)GBl

2(b̃1i)
(b2|B1 ≤ b̃1i)I−2)/∂b̃2i

]
dPr[B̃l

2(b̃1i) ≤ b2|V1 = v1i].
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A.7 Detailed derivation of equation (10)

[Back to ToC] I use equation (22), which asserts the following equality,

GBl
2(b)

(·|B1 ≤ b) =
1

G1(b)

∫ b

b
GBl

2(b)|B1
(·|u)dG1(u).

Taking the derivative of both sides with respect to b yields the following result.

∂

∂b
GBl

2(b)
(·|B1 ≤ b) =

∂

∂b

(
1

G1(b)

∫ b

b
GBl

2(b)|B1
(·|u)dG1(u)

)
= − g1(b)

G1(b)
GBl

2(b)
(·|B1 ≤ b) +

1

G1(b)

∂

∂b

{∫ b

b
GBl

2(b)|B1
(·|u)dG1(u)

}
= − g1(b)

G1(b)
GBl

2(b)
(·|B1 ≤ b) +

1

G1(b)

{
GBl

2(b)|B1
(·|b)g1(b) +

∫ b

b

∂GBl
2(b)|B1

(·|u)
∂b

dG1(u)

}
.

in which the last equality holds by Leibniz Integral Rule. Moreover, the integrand, ∂GBl
2(b)|B1

(·|u)/∂b,
has the following equality.

∂GBl
2(b)|B1

(·|u)
∂b

=
∂ Pr[sl2(V2, b) ≤ ·|s1(V1) = u]

∂b
=

∂ Pr[V2 ≤ ξl2(·, b)|V1 = ξ1(u)]

∂b

≡
∂F2|1[ξ

l
2(·, b)|ξ1(u)]
∂b

= f2|1[ξ
l
2(·, b)|ξ1(u)]

∂ξl2(·, b)
∂b

= gBl
2(b)|B1

(·|u) ∂ξ
l
2(·, b)/∂b

∂ξl2(·, b)/∂bl2
,

in which the first line uses the equivalence GBl
2(b)|B1

(·|u) ≡ Pr[Bl
2(b) ≤ ·|B1 = b] and that the

random variables [Bl
2(b), B1] come from the equilibrium strategies [sl2, s1]; the last line uses the

equality gBl
2(b)|B1

(·|u) = f2|1[ξ
l
2(·, b)|ξ1(u)]

∂ξl2(·,b)
∂bl2

, which is the density of Bl
2(b) = sl2(V2, b) given

B1 = u.
Hence, we can extend further the derivation of ∂

∂bGBl
2(b)

(·|B1 ≤ b) as follows.

∂

∂b
GBl

2(b)
(·|B1 ≤ b) = − g1(b)

G1(b)
GBl

2(b)
(·|B1 ≤ b) +

1

G1(b)

{
GBl

2(b)|B1
(·|b)g1(b) +

∫ b

b

∂GBl
2(b)|B1

(·|u)
∂b

dG1(u)

}

= − g1(b)

G1(b)
GBl

2(b)
(·|B1 ≤ b)

+
1

G1(b)

{
GBl

2(b)|B1
(·|b)g1(b) +

∂ξl2(·, b)/∂b
∂ξl2(·, b)/∂bl2

∫ b

b
gBl

2(b)|B1
(·|u)dG1(u)

}
=

g1(b)

G1(b)

{
GBl

2(b)|B1
(·|b)−GBl

2(b)
(·|B1 ≤ b)

}
+

∂ξl2(·, b)/∂b
∂ξl2(·, b)/∂bl2

gBl
2(b)

(·|B1 ≤ b).

This gives,

GBl
2(b)|B1

(·|b) = GBl
2(b)

(·|B1 ≤ b) +
G1(b)

g1(b)

{
∂GBl

2(b)
(·|B1 ≤ b)

∂b
− ∂ξl2(·, b)/∂b

∂ξl2(·, b)/∂bl2
gBl

2(b)
(·|B1 ≤ b)

}
,

and if we change the notations from [·, b, bl2] to [x, b̃1i, b̃2i], we get equation (10).

46



A.8 Proof of Theorem 1

[Back to ToC] The preliminary proof is available upon request. The complete proof follows a
structure similar to Proposition 1 in Li et al. (2002), Proposition 1 in Campo et al. (2003), and
Theorem 1 in Guerre et al. (2000).

A.9 IPV and other Models

[Back to ToC] As discussed in Perrigne and Vuong (2023), the Independent Private Value (IPV)
model is the most commonly used framework in the empirical auction literature. Other models,
such as the Affiliated Value (AV) or Pure Common Value (PCV) models, are susceptible to
non-identification issues because they are observationally equivalent to some Affiliated Private
Value (APV) models (see Section 8 of Perrigne and Vuong (2023) and Laffont and Vuong
(1996): Laffont and Vuong’s paper focuses on first-price sealed-bid auctions where bidders are
symmetric and desire a single object). As noted by Laffont and Vuong (1996), both symmetric
IPV and symmetric APV models can be identified from the bid distribution, which aligns with
the needs of empirical auction literature (For the details of identification in APV model, see Li
et al. (2002)). The reason IPV has gained more popularity than APV can be though of that
(i) the affiliation across bids in APV can be addressed by using a suitable conditioning variable
under the IPV framework, and (ii) various techniques to handle unobserved heterogeneity in
IPV models can also account for the observed affiliation in bids.

A.10 Ortega-Reichert (1968)

[Back to ToC] Chapter 8 of Ortega-Reichert (1968) considers a two-period, two-player pro-
curement auction. In this auction, all bids are disclosed, and both bidders desire both units.
Ortega-Reichart assumes a pure-strategy monotone equilibrium (Section 8.2) and establishes
its existence; as pointed out in Klemperer (1999) and in section 3.1 of Weber (1983), the values
across both periods of a bidder in Ortega-Reichart are correlated, and the bidder does not know
his value for the second item until the first item is sold; no complementarity is considered, so a
bidder’s value from acquiring the objects is V1 + V2. Ortega-Reichart finds that, in this model,
a bidder shades more in the first auction (compared to a single-object first-price auction) so
that, when his bid is revealed, he can mitigate the fierce competition in the second auction. As
pointed out in footnote 26 of Klemperer (1999) and in footnote 1 of working paper, Chapter 8
of Ortega-Reichart was influential in guiding Milgrom and Roberts (1982).

B Section 3, Identification

B.1 Derivation of equations (11)-(12) from the dataset, and Lemmas 1 and
2

[Back to ToC] Independence implies that the pairs in the set {(V1i, V2i)i=1,...,I} are independent,
i.e., the pairs come from the joint density f(v11, v21, ..., v1I , v2I) =

∏I
j=1 f(v1j , v2j) which has
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the following equivalences.

f(v11, v21, ..., v1I , v2I) ≡ Pr[V11 = v11, V21 = v21, ..., V1I = v1I , V2I = v2I ],

f(v1j , v2j) ≡ Pr[V1j = v1j , V2j = v2j ].

The independence among pairs in the set {(V1i, V2i)i=1,...,I}, which I refer to as pair indepen-
dence, is used in the proof of following Lemma 1.

Lemma 1. Let the first auction winner be any bidder i, i.e., W1 = i, and his winning bid
be b1, i.e., Bmax

1 = b1. Then I second-auction bids are independent conditional on the event
{W1 = i, Bmax

1 = b1} = {Bmax
1,−i ≤ B1i = b1}. In this case, the distribution of the first auction

winner’s B2i given the event is Gw
2|Bmax

1
(·|b1) = Gw

2|1(·|b1), whereas for the first auction losers
j ̸= i, the distribution of B2j given the event is Gl

2|Bmax
1

(·|b1) = GBl
2(b1)

(·|B1 ≤ b1).
Proof: Let V max

1,−i ≡ max {V1j , j ̸= i}. Using independence and pair independence, the joint
density of V2i and (V1j , V2j)j ̸=i given the event {V max

1,−i ≤ V1i = v1i} is equivalent to (23).

Pr[V2i = v2i, (V1j = v1j , V2j = v2j), j ̸= i | V1i = v1i, V1j ≤ V1i, j ̸= i]

=
Pr[(V1i = v1i, V2i = v2i), (V1j = v1j , V2j = v2j , V1j ≤ V1i), j ̸= i]

Pr[V1i = v1i, V1j ≤ V1i, j ̸= i]

=
Pr[V1i = v1i, V2i = v2i]

∏
j ̸=i Pr[V1j = v1j , V2j = v2j ]

f1i(v1i)
∏

j ̸=i F1j(v1i)

= Pr[V2i = v2i|V1i = v1i]
∏
j ̸=i

Pr[V1j = v1j , V2j = v2j |V1j ≤ v1i]

= Pr[V2i = v2i|V1i = v1i, V1j ≤ V1i, j ̸= i]×∏
j ̸=i

Pr[V1j = v1j , V2j = v2j |V1i = v1i, V1j ≤ V1i, j ̸= i], (23)

in which the second equality holds if v1j ≤ v1i, j ̸= i holds; the third equality holds by noting
that Pr[V1j = v1j , V2j = v2j ]/F1j(v1i) = Pr[V1j = v1j , V2j = v2j |V1j ≤ v1i] holds as long as
v1j ≤ v1i, j ̸= i holds; the last equality holds by independence. As a result, equation (23) shows
that V2i and (V1j , V2j)j ̸=i are independent given the condition {V max

1,−i ≤ V1i = v1i}. Next, we
translate this conditional independence in terms of bids.

Because B1j = s1 (V1j) with the monotonicity of s1, the conditioning event {V max
1,−i ≤ V1i =

v1i} is the same as {Bmax
1,−i ≤ B1i = b1} with b1 = s1 (v1i). Given {Bmax

1,−i ≤ B1i = b1}, we have
B2i = sw2 (v1i, V2i) for i and B2j = sl2 (V2j , b1) = sl2(V2j , s1(v1i)) for j ̸= i. Since strategies sw2 and
sl2 are continuous and thus measurable, the elements in the set {sw2 (v1i, V2i), s

l
2(V2j , s1(v1i)), j ̸=

i} are independent given the event {V max
1,−i ≤ V1i = v1}. This is equivalent to elements in the

set {B2i, B2j , j ̸= i} being independent given {Bmax
1,−i ≤ B1i = b1}, which proves that the I

second-auction bids are independent conditional on {W1 = i, Bmax
1 = b1} = {Bmax

1,−i ≤ B1i = b1}.
For i, the distribution of B2i given {W1 = i, Bmax

1 = b1} = {Bmax
1,−i ≤ B1i = b1} is

Pr [B2i ≤ · | W1 = i, Bmax
1 = b1] = Pr [sw2 (V1i, V2i) ≤ · | s1(V1j) ≤ b1, ∀j ̸= i, s1(V1i) = b1]

= Pr [sw2 (V1i, V2i) ≤ · | s1(V1i) = b1] , (24)
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in which the second equality holds by independence. Since the left-hand side probability of (24)
does not depend on the first-auction winner’s identity i by symmetry, we have Pr[B2i ≤ · | W1 =

i, Bmax
1 = b1] = Pr[Bw

2 ≤ ·|Bmax
1 = b1] ≡ Gw

2|Bmax
1

(·|b1). And, the right-hand side probability of
(24) also does not depend on winner’s identity i by symmetry, so we have Pr[sw2 (V1i, V2i) ≤ · |
s1(V1i) = b1] = Pr[sw2 (V1, V2) ≤ · | s1(V1) = b1] ≡ Gw

2|1(·|b1).
For j ̸= i, the distribution of B2j given {W1 = i, Bmax

1 = b1} = {Bmax
1,−i ≤ B1i = b1} is

Pr [B2j ≤ · | W1 = i, Bmax
1 = b1] = Pr[sl2 (V2j , s1(V1i)) ≤ ·|s1(V1k) ≤ s1(V1i), ∀k ̸= i, s1(V1i) = b1]

= Pr[sl2 (V2j , s1(V1i)) ≤ ·|s1(V1j) ≤ s1(V1i), s1(V1i) = b1]

= Pr[sl2 (V2j , b1) ≤ · | s1(V1j) ≤ b1], (25)

in which the first equality holds by B2j being sl2(V2j , B
max
1 ), and the rest of the equalities hold by

independence. Since the left-hand side probability of (25) depends neither on the first auction
winner’s identity i nor on a first auction loser’s identity j because of symmetry, we have
Pr [B2j ≤ · | W1 = i, Bmax

1 = b1] = Pr[Bl
2 ≤ ·|Bmax

1 = b1] ≡ Gl
2|Bmax

1
(·|b1) holds. And, the right-

hand side probability of (25) also does not depend on bidder’s identity by symmetry, so we
have Pr[sl2 (V2j , b1) ≤ · | s1(V1j) ≤ b1] = Pr[sl2 (V2, b1) ≤ · | s1(V1) ≤ b1] ≡ GBl

2(b1)
(·|B1 ≤ b1).

Q.E.D.

Lemma 2 below, along with Lemma 1, is also needed in the derivation of equations (11)-(12);
Lemma 2 closely relates to Remarks 7.3.1 and Theorem 7.3.1 in Rao (1992).

Lemma 2. Let the tuple (Z, J) be the ‘identified maximum tuple’ where Z = max{X1, ..., Xk}
and XJ = Z. If X1, ..., Xk are mutually independent, then their distributions F1(·), ..., Fk(·) are
identified by a tuple (Z, J) such that the following holds.

Fj(x) = exp

−
∫ +∞

x

[
k∑

i=1

Hi(t)

]−1

dHj(t)

 = exp
{
−
∫ +∞

x
(Pr[Z ≤ t])−1dHj(t)

}
, (26)

in which Hj(x) ≡ Pr[Z ≤ x, J = j] for j = 1, . . . , k.
Proof: Since Hj(x) = Pr [Xj is the maximum among X1, . . . , Xk, and Xj ≤ x], we have

Hj(x) =

∫ x

−∞

∏
i ̸=j

Fi(t)dFj(t) =

∫ x

−∞

∏k
i=1 Fi(t)

Fj(t)
dFj(t) =

∫ x

−∞

k∏
i=1

Fi(t)d logFj(t). (27)

But,
∑k

i=1Hi(t) =
∑k

i=1 Pr[Z ≤ t, J = i] = Pr[Z ≤ t] =
∏k

i=1 Fi(t). Thus, equation (27)
becomes

Hj(x) =

∫ x

−∞

k∑
i=1

Hi(t)d logFj(t). (28)

Differentiating equation (28) with respect to x gives the following equation.

d logFj(x) =

[
k∑

i=1

Hi(x)

]−1

dHj(x) (29)
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Integrating both sides of equation (29) from x to +∞, while noting that logFj(+∞) = 0, gives

− logFj(x) =

∫ +∞

x

[
k∑

i=1

Hi(t)

]−1

dHj(t),

which implies equation (26) since
∑k

i=1Hi(t) = Pr[Z ≤ t]. Q.E.D.

Given Lemmas 1 and 2, I prove in words that the distributionsGw
2|Bmax

1
(·|b1) andGl

2|Bmax
1

(·|b1)
are identified.

As an analyst, I observe (Bmax
1 ,W1, B

max
2 ,W2), where Bmax

t ≡ max {Bt1, . . . , BtI} and Wt

are the winning bid and the random winner’s index in the t-th auction, respectively, for
t = 1, 2. From Lemma 1, we know that the I second auction bids {B2j , j = 1 . . . , I} are
independent with distributions Gw

2|Bmax
1

(·|b1) when j = i and Gl
2|Bmax

1
(·|b1) for j ̸= i condi-

tional on the event {Bmax
1,−i ≤ B1i = b1i} = {W1 = i, Bmax

1 = b1} where b1 = b1i. It fol-
lows from Lemma 2 with Fi(·) = Gw

2|Bmax
1

(·|b1) for i, Fj(·) = Gl
2|Bmax

1
(·|b1) for j ̸= i, and

Hj(·|b1) = Pr [Bmax
2 ≤ ·,W2 = j|W1 = i, Bmax

1 = b1] for j ∈ {1, ..., I} that Gw
2|Bmax

1
(·|b1) and

Gl
2|Bmax

1
(·|b1) are identified.

To derive equations (11)-(12), note the alternative expression of Hj(·|b1) for j ̸= i.

Hj (·|b1) =
1

I − 1
Pr [Bmax

2 ≤ ·,W2 ̸= i | W1 = i, Bmax
1 = b1]

= [1/(I − 1)]Pr [Bmax
2 ≤ · | W2 ̸= i,W1 = i, Bmax

1 = b1]× Pr [W2 ̸= i | W1 = i, Bmax
1 = b1]

= [1/(I − 1)]Pr [Bmax
2 ≤ · | W2 ̸= W1,W1 = i, Bmax

1 = b1]× Pr [W2 ̸= W1 | W1 = i, Bmax
1 = b1]

= [1/(I − 1)]Pr [Bmax
2 ≤ · | W2 ̸= W1, B

max
1 = b1]× Pr [W2 ̸= W1 | Bmax

1 = b1]

= [1/(I − 1)]Pr [Bmax
2 ≤ ·,W2 ̸= W1 | Bmax

1 = b1] ,

in which the first equality uses the symmetry of the first auction losers in the second auction,
which holds by symmetry. Alternative expression for Hi(·|b1) is,

Hi (·|b1) = Pr [Bmax
2 ≤ ·,W2 = i | W1 = i, Bmax

1 = b1]

= Pr [Bmax
2 ≤ · | W2 = i,W1 = i, Bmax

1 = b1]× Pr [W2 = i | W1 = i, Bmax
1 = b1]

= Pr [Bmax
2 ≤ · | W2 = W1,W1 = i, Bmax

1 = b1]× Pr [W2 = W1 | W1 = i, Bmax
1 = b1]

= Pr [Bmax
2 ≤ · | W2 = W1, B

max
1 = b1]× Pr [W2 = W1 | Bmax

1 = b1]

= Pr [Bmax
2 ≤ ·,W2 = W1 | Bmax

1 = b1] ,

in which the fourth equality holds because the bidders are symmetric in the first auction. Hence,
Lemma 2 and Lemma 1 give us,

Gw
2|1(b2|b1) = Gw

2|Bmax
1

(b2|b1)

= exp
{
−
∫ +∞

b2

(Pr [Bmax
2 ≤ b | Bmax

1 = b1])
−1 dPr[Bmax

2 ≤ b,W2 = W1|Bmax
1 = b1]

}
,

Gl
2|Bmax

1
(b2|b1) = GBl

2(b1)
(b2|B1 ≤ b1)

50



= exp
{
− 1

I − 1

∫ +∞

b2

(Pr [Bmax
2 ≤ b | Bmax

1 = b1])
−1 dPr[Bmax

2 ≤ b,W2 ̸= W1|Bmax
1 = b1]

}
.

B.2 Derivation of equation (13) from the dataset

[Back to ToC] Refer to the following equalities.

Pr[Bmax
1 ≤ b1] = Pr[s1(V1j) ≤ b1, ∀j] =

∏
j∈{1,...,I}

Pr[s1(V1j) ≤ b1]

= Pr[s1(V1) ≤ b1]
I = Pr[B1 ≤ b1]

I ≡ G1(b1)
I ,

in which the second equality holds by independence; the third holds by symmetry.

B.3 Derivation of equation (14)

[Back to ToC] I progress in three steps.

✓ Step 1: Assume an arbitrary bidder i who had bid any bid b1i below the winning bid of
b1 in the first auction. I want to first identify a distribution Pr[V2i ≤ ·|B1i < Bmax

1 = b1].
From first-order condition (6), we know the following holds.

V2i = Bl
2i +

Gw
2|1(B

l
2i|b1)GBl

2(b1)
(Bl

2i|B1 ≤ b1)
I−2

∂(Gw
2|1(B

l
2i|b1)GBl

2(b1)
(Bl

2i|B1 ≤ b1)I−2)/∂bl2i
≡ ξl2(B

l
2i, b1),

in which Bl
2i = sl2(V2i, b1) and B1i = s1(V1i) for any B1i < b1. However, since I only have

access to (Bmax
1 ,W1, B

max
2 ,W2) , I can’t observe Bl

2i if i never wins the second auction.

To circumvent this situation, I rely on the identified bid distribution Gl
2|Bmax

1
(·|b1) =

GBl
2(b1)

(·|B1 ≤ b1) to identify a distribution Pr[V2 ≤ ·|B1 < Bmax
1 = b1]. Since the bid

distribution GBl
2(b1)

(·|B1 ≤ b1) is the distribution of Bl
2 given that this loser saw the

winning bid of b1, I can rewrite Pr[V2 ≤ ·|B1 < Bmax
1 = b1] as follows.

Pr[V2 ≤ ·|B1 < Bmax
1 = b1] = Pr[ξl2(Bl

2, b1) ≤ ·|B1 < Bmax
1 = b1]

= E[1[ξl2(B
l
2, b1) ≤ ·]|B1 < Bmax

1 = b1]

=

∫ b2

b2

1[ξl2(x, b1) ≤ ·]dGBl
2(b)

(x|B1 ≤ b1), (30)

✓ Step 2: Note that the identified distribution Pr[V2 ≤ ·|B1 ≤ Bmax
1 = b1] is equivalent to

another distribution Pr [V2 ≤ ·|B1 ≤ b1], as I show below. Choose an arbitrary bidder i

and assume W1 = j, then a distribution Pr[V2i ≤ ·|B1i ≤ Bmax
1 = b1] is as follows.

Pr[V2i ≤ ·|B1i ≤ Bmax
1 = b1] where B1i = s1(V1i)

=
Pr [B11 < b1, ..., (V2i ≤ ·, B1i < b1), B1j = b1, ..., B1I < b1 ]

Pr[B11 < b1, ..., B1i < b1, B1j = b1, ..., B1I < b1]

=
Pr[B11 < b1]...Pr [V2i ≤ ·, B1i < b1] Pr[B1j = b1]...Pr[B1I < b1]

Pr[B11 < b1]...Pr[B1i < b1] Pr[B1j = b1]...Pr[B1I < b1]
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=
Pr[V2i ≤ ·, B1i < b1]

Pr[B1i < b1]

= Pr[V2i ≤ ·|B1i < b1], (31)

in which the second equality holds by independence. Also by symmetry, the result above
is equivalent to Pr[V2 ≤ ·|B1 ≤ Bmax

1 = b1] = Pr[V2 ≤ ·|B1 < b1].

✓ Step 3: Note that the following equation holds for Pr [V2 ≤ ·|B1 < b1].

Pr[V2 ≤ · | B1 < b1] =
1

G1(b1)

∫ b1

b1

Pr[V2 ≤ ·, B1 = x]dx.

If we take the derivative of both sides with respect to b1, we have the following.

∂

∂b1
Pr[V2 ≤ · | B1 < b1]

= − g1(b1)

G1(b1)2

∫ b1

b1

Pr[V2 ≤ ·, B1 = x]dx+
1

G1(b1)
Pr[V2 ≤ ·, B1 = b1]

= − g1(b1)

G1(b1)
Pr[V2 ≤ · | B1 < b1] +

g1(b1)

G1(b1)
Pr[V2 ≤ · | B1 = b1]

Rearranging the equation above yields the following equation,

Pr[V2 ≤ · | B1 = b1] = Pr[V2 ≤ · | B1 < b1] +
G1(b1)

g1(b1)

(
∂

∂b1
Pr[V2 ≤ · | B1 < b1]

)
.

We already identified a distribution Pr[V2 ≤ · | B1 < b1] in Steps 1 and 2.

B.4 Derivation of equation (15)

[Back to ToC] I start with a distribution Pr[δ̃ (B1, V2) ≤ ·|B1 = b1] where δ̃ (B1, V2) ≡ δ(s−1
1 (B1) , V2) =

δ (V1, V2). Pick an arbitrary bidder i and assume W1 = i. Then for any Bw
2i ∈ [b2, b2], the fol-

lowing must hold by first order condition (5):

δ(v1i, V2i) = δ̃(b1i, V2i) = Bw
2i +

GBl
2(b1i)

(Bw
2i|B1 ≤ b1i)

I−1

∂GBl
2(b1i)

(Bw
2i|B1 ≤ b1i)I−1/∂bw2i

≡ ξw2 (B
w
2i, b1i),

in whichBw
2i = sw2 (v1i, V2i) and b1i = s1 (v1i). However, since I only have access to (Bmax

1 ,W1, B
max
2 ,W2)

, I observe Bw
2i only if bidder i had won both the first and the second auction, i.e., W1 = W2 = i.

To circumvent this situation, I rely on the identified bid distributionGw
2|Bmax

1
(·|b1) = Gw

2|1 (·|b1)
to identify a distribution Pr[δ̃ (B1, V2) ≤ ·|B1 = b1]. Since the bid distribution Gw

2|1 (·|b1) is the
distribution of Bw

2 given B1 = b1, I can rewrite Pr[δ̃ (B1, V2) ≤ ·|B1 = b1] as follows.

Pr[δ̃ (B1, V2) ≤ ·|B1 = b1] = Pr[ξw2 (Bw
2 , B1) ≤ ·|B1 = b1]

= E[1[ξw2 (B
w
2 , B1) ≤ ·]|B1 = b1]

=

∫ b2

b2

1[ξw2 (x, b1) ≤ ·]dGw
2|1 (x|b1) , (32)
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in which the first equality holds by the first-order condition. Note that equation (32) is equiv-
alent to Pr[δ̃ (Bmax

1 , V2) ≤ ·|Bmax
1 = b1] because B1 in (32) is the winning bid and both distri-

butions Gw
2|1 and Gw

2|Bmax
1

are the same.
Since δ̃ (B1, V2) ≡ δ(s−1

1 (B1) , V2) = δ (V1, V2) holds and s1 = ξ−1
1 is a monotone strategy,

we have the following result,

Pr[δ̃ (B1, V2) ≤ ·|B1 = b1] = Pr[δ (V1, V2) ≤ ·|V1 = v1].

B.5 Alternative Identification Strategy for the function δ

[Back to ToC] For the ease of exposition in B.5, I introduce a new notation below, namely F̃2|1;
I omit the dependence of the auction covariate Z and the number of bidders I in B.5 whenever
possible.

F2|1(v2|v1) ≡ Pr[V2 ≤ v2|V1 = v1] = Pr[V2 ≤ v2|B1 = b1] ≡ F̃2|1(v2|b1),

where the equality holds by the reason described in equation (14). Analogously, I introduce two
new notations, D2|1 and D̃2|1, as follows,

D2|1(d|v1) ≡ Pr[δ(v1, V2) ≤ d|V1 = v1] = Pr[δ̃(b1, V2) ≤ d|B1 = b1] ≡ D̃2|1(d|b1),

where the equality holds from the result in B.4.
The original approach, namely “α-quantile of (15) = δ(v1, α-quantile of (14))”, asserts that

I can identify a function δ(v1, ·) by comparing the quantiles of two distributions D2|1(·|v1) and
F2|1(·|v1). In detail, the comparison of the quantiles follows the steps below, which I refer to as
Original Identification Strategy.

1. Make a grid of α, say [0.01, ..., 0.99].

2. For each grid point of α, we can calculate the quantiles of F̃2|1(·|b1) and D̃2|1(·|b1). Denote
those quantiles as ṽ2|1(α|b1) and d̃2|1(α|b1).

3. Compare ṽ2|1(α|b1) and d̃2|1(α|b1) for every grid point in α, then we can identify a function
δ̃(b1, ·).

As a result, both the domain and the range of the function δ̃(b1, ·) = δ(v1, ·) are [ṽ2|1(0|b1), ṽ2|1(1|b1)]
and [d̃2|1(0|b1), d̃2|1(1|b1)]. But, Original Identification Strategy causes huge computa-
tional burden in Monte Carlo simulation: calculating the quantile of a distribution is taxing,
and it becomes more taxing when the distribution is complicated as is our case in (14) and (15).

To circumvent the computational burden in Monte Carlo simulation, I describe Alterna-
tive Identification Strategy to identify a function δ as follows:

1. Pick arbitrary value for the first auction max bid Bmax
1 , say Bmax

1 = 0.3. Then make a
grid of b2 such that it has fifty points,

[
b12,{Bmax

1 =0.3}, ..., b
50
2,{Bmax

1 =0.3}
]
.
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2. Do ξl2(b2, 0.3) for every b2 in the grid. Then by the first-order condition (6), this outputs
the grid of v2 given Bmax

1 = 0.3, which means we will have the following grid:

[
ξl2(b

1
2,{Bmax

1 =0.3}, 0.3), ..., ξ
l
2(b

50
2,{Bmax

1 =0.3}, 0.3)
]
=
[
v12,{Bmax

1 =0.3}, ..., v
50
2,{Bmax

1 =0.3}
]
.

Since a function ξl2(·, 0.3) is strictly increasing in ·, we know that v12,{Bmax
1 =0.3} and

v502,{Bmax
1 =0.3} are the smallest and the largest v2 given Bmax

1 = 0.3.

3. Similarly, define v12,{B1=0.3} and v502,{B1=0.3} as the smallest and the largest v2 given the
first auction bid B1 = 0.3. I claim that these two values must be the same as v12,{Bmax

1 =0.3}
and v502,{Bmax

1 =0.3} by the following reason:

“Step 1 from B.3 implies that the interval [ξl2(b12,{Bmax
1 =0.3}, 0.3), ξ

l
2(b

50
2,{Bmax

1 =0.3}, 0.3)] is
the support of the distribution Pr[V2 ≤ ·|B1 < Bmax

1 = 0.3]. And, (31) from B.3 implies
that Pr[V2 ≤ ·|B1 ≤ Bmax

1 = 0.3] and Pr[V2 ≤ ·|B1 ≤ 0.3] are the same. And, equation
(14) implies that the support of Pr[V2 ≤ ·|B1 ≤ 0.3] and the support of Pr[V2 ≤ ·|B1 =

0.3] ≡ F̃2|1(·|0.3) must be the same by noting the right-hand side of (14).”

4. Because the claim asserts v12,{B1=0.3} = v12,{Bmax
1 =0.3} and v502,{B1=0.3} = v502,{Bmax

1 =0.3}, I
can get the set of probabilities, {0, α1, ..., α49, 1}, by using the right-hand side of (14) as
follows.

Pr
[
V2 ≤ v12,{Bmax

1 =0.3} = v12,{B1=0.3} | B1 = 0.3
]
= 0,

Pr
[
V2 ≤ v22,{Bmax

1 =0.3} | B1 = 0.3
]

= α2,

...

...

Pr
[
V2 ≤ v492,{Bmax

1 =0.3} | B1 = 0.3
]

= α49,

Pr
[
V2 ≤ v502,{Bmax

1 =0.3} = v502,{B1=0.3} | B1 = 0.3
]
= 1.0.

Given the set {0, α2, ..., α49, 1.0}, we can get the α-quantiles of D̃2|1(·|b1), namely d̃2|1(α|b1).
But, computing the quantiles directly from the distribution D̃2|1 is taxing because the
distribution itself is already complicated as can be seen from (15). To circumvent this
computational burden, I claim that we can get d̃2|1(α|b1) from the α-quantile of the bid
distribution Gw

2|1 by the following reason:

“B.4 asserts that D̃2|1(·|b1) and Pr[ξw2 (Bw
2 , B1) ≤ ·|B1 = b1] are the same. The random

variable of the distribution Pr[ξw2 (Bw
2 , B1) ≤ ·|B1 = b1] is Bw

2 transformed by a monotone
function ξw2 (·, B1 = b1). Note that random variable Bw

2 given B1 = b1 comes from the
distribution Gw

2|1(·|b1). Thus, the following must hold by the quantile’s invariance to
monotone transformation:

α-quantile of D̃2|1(·|b1) = ξw2 (α-quantile of Gw
2|1(·|b1), b1),
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which I can alternatively express as follows

d̃2|1(α|b1) = ξw2 (b
w
2|1(α|b1), b1), (33)

where bw2|1(α|b1) stands for the α-quantile of the bid distribution Gw
2|1(·|b1).”

5. As a result, we have fifty sets as follows.

{ v12,{Bmax
1 =0.3}︸ ︷︷ ︸

=v1
2,{B1=0.3}

, α = 0, d̃2|1(0|B1 = 0.3)}

{ v22,{Bmax
1 =0.3}, α = α2, d̃2|1(α2|B1 = 0.3)}

...

...

{ v492,{Bmax
1 =0.3}, α = α49, d̃2|1(α49|B1 = 0.3)}

{ v502,{Bmax
1 =0.3}︸ ︷︷ ︸

=v50
2,{B1=0.3}

, α = 1, d̃2|1(1|B1 = 0.3)}

Compare the first and the third elements of each set, which identifies a function δ̃(0.3, ·) =
δ(s−1

1 (0.3), ·).

The difference between Original and Alternative lies where they start: the original
starts from the grid α ∈ [0.01, ..., 0.99] while the alternative stats from the grid [b2, b2]. Because
the alternative starts from the grid of bids, it avoids the direct calculation of the quantiles
ṽ2(α|b1) from the distribution F̃2|1(·|b1). This avoidance is what makes the alternative much
faster than the original in Monte Carlo simulation.

C Section 4, Estimation and Monte Carlo

C.1 Bandwidth and the derivations of (17)-(19)

[Back to ToC] Note the following equality where a random variable Z stands for the auction
covariate.

Pr [Bmax
2 = b2, D = 1 | Bmax

1 = b1, z, I]

=
Pr [Bmax

2 = b2, B
max
1 = b1, z | D = 1, I]

Pr [Bmax
1 = b1, z | D = 1, I]

Pr[D = 1 | Bmax
1 = b1, z, I] (34)

where D is 1[W2 = W1] so that d can be either 1 or 0; d = 1 outputs mw
2 (b2|b1, z, I) while

d = 0 outputs ml
2(b2|b1, z, I). Two new notations mw

2 and ml
2 are the densities of the following

probabilities Mw
2 and M l

2:

Mw
2 (b2|b1, z, I) ≡ Pr[Bmax

2 ≤ b2,W2 = W1|Bmax
1 = b1, z, I],

M l
2(b2|b1, z, I) ≡ Pr[Bmax

2 ≤ b2,W2 ̸= W1|Bmax
1 = b1, z, I],

where these Mw
2 and M l

2 are analogous to the estimands of (18) and (19).
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Regarding the probabilities inside the right-hand side of (34), we can come up with the
following estimators; throughout this document, I will assume a random variable Z to be a unit
dimension.

P̂r [Bmax
2 = b2, B

max
1 = b1, z | D = 1, I]

=
1

L1=2
I h1=2

2,3 h1=2
1,3 h1=2

Z,3

∑
ℓ∈L1=2

I

K

(
b2 −Bmax

2ℓ

h1=2
2,3

)
K

(
b1 −Bmax

1ℓ

h1=2
1,3

)
K

(
z − Zℓ

h1=2
Z,3

)
(35)

P̂r [Bmax
1 = b1, z | D = 1, I]

=
1

L1=2
I h1=2

1,2 h1=2
Z,2

∑
ℓ∈L1=2

I

K

(
b1 −Bmax

1ℓ

h1=2
1,2

)
K

(
z − Zℓ

h1=2
Z,2

)
(36)

P̂r [D = 1 | Bmax
1 = b1, z, I]

=

∑
ℓ∈L1=2

I
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

) (37)

where (37) holds by employing kernel regression on E[1[D = d]|Bmax
1 = b1, z, I] = Pr[D =

d|Bmax
1 = b1, z, I]. Some description about the notations used in (35)-(37) follows.

✓ Let L1=2
I and L1 ̸=2

I be the numbers of auction pairs with I bidders such that W1ℓ = W2ℓ

and W1ℓ ̸= W2ℓ. Thus, L1=2
I +L1 ̸=2

I = LI where LI is the number of auction pairs with I

bidders.

✓ Let LI ≡ {ℓ : Iℓ = I} be the index set corresponding to auction pairs with I bidders
such that we have L1=2

I ∪ L1 ̸=2
I = LI . Here L1=2

I (resp., L1 ̸=2
I ) denotes the subset of LI

that satisfies W1ℓ = W2ℓ(resp., W1ℓ ̸= W2ℓ). That is, L1=2
I ≡ {ℓ ∈ LI : W1ℓ = W2ℓ} and

L1 ̸=2
I ≡ {ℓ ∈ LI : W1ℓ ̸= W2ℓ}.

✓ There are three types of bandwidths, (hvar,dim, h1=2
var,dim, h1 ̸=2

var,dim). hvar,dim uses the entire
auction pairs LI while h1=2

var,dim and h1 ̸=2
var,dim use L1=2

I and L1 ̸=2
I . The subscripts (var, dim)

are as follows:

– var is one of {1, 2, Z} where each element represents Bmax
1 , Bmax

2 , and Z.

– dim stands for the dimension of the probability density. In (35)-(37), dim is either
2 or 3.

For example, assume that I choose Silverman’s rule of thumb(Silverman (1986)) for the band-
widths — then, we can come up with the following bandwidths.

heventvar,dim =

(
4

dim+ 2

)1/(dim+4)

(Levent
I )−1/(dim+4)σ̂event

ṽar,I (38)

where if I were to use a Triweight kernel, I would multiply 2.978: this number comes from
Table 6.3 of Scott (2015). Here, the subscript (var, ṽar) can be one of (1, Bmax

1 ), (2, Bmax
2 ),

and (Z,Z). The superscript event can be one of 1 = 2 and 1 ̸= 2. Thus, one example where
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(var, ṽar)=(2, Bmax
2 ) and event = 1 ̸= 2, and dim = 3 will output the following bandwidth.

h1 ̸=2
2,3 =

(
4

3 + 2

)1/(3+4)

(L1 ̸=2
I )−1/(3+4)σ̂1 ̸=2

Bmax
2 ,I

where σ̂1 ̸=2
Bmax

2 ,I is calculated from {Bmax
2ℓ : ℓ ∈ L1 ̸=2

I }. Going back to (38), there are bandwidths
that do not have the superscript event such as h1,2 inside (37). In this case, the right-hand side
of (38) uses LI and σ̂ṽar,I instead of Levent

I and σ̂event
ṽar,I

Now, we go back to making the estimator of (34). Given (35)-(37), the estimator P̂r[Bmax
2 =

b2, D = 1 | Bmax
1 = b1, z, I] is as follows.

P̂r [Bmax
2 = b2, D = 1 | Bmax

1 = b1, z, I] =
(35)

(36)
(37)

=
h1=2
1,2 h1=2

Z,2

h1=2
2,3 h1=2

1,3 h1=2
Z,3

∑
ℓ∈L1=2

I
K

(
b2−Bmax

2ℓ

h1=2
2,3

)
K

(
b1−Bmax

1ℓ

h1=2
1,3

)
K

(
z−Zℓ

h1=2
Z,3

)
∑

ℓ∈L1=2
I

K

(
b1−Bmax

1ℓ

h1=2
1,2

)
K

(
z−Zℓ

h1=2
Z,2

)

×

∑
ℓ∈L1=2

I
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

) .

Since it is cumbersome, Let’s define a new notation λ1=2
ℓ (b1) as follows.

λ1=2
ℓ (b1) ≡

1
h1=2
1,3

1
h1=2
Z,3

K

(
b1−Bmax

1ℓ

h1=2
1,3

)
K

(
z−Zℓ

h1=2
Z,3

)
1

h1=2
1,2

1
h1=2
Z,2

∑
ℓ∈L1=2

I
K

(
b1−Bmax

1ℓ

h1=2
1,2

)
K

(
z−Zℓ

h1=2
Z,2

)∑ℓ∈L1=2
I

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

) .

(39)

For a future use, I also define a new notation λ1 ̸=2
ℓ (b1) as follows.

λ1 ̸=2
ℓ (b1) ≡

1

h1 ̸=2
1,3

1

h1 ̸=2
Z,3

K

(
b1−Bmax

1ℓ

h1 ̸=2
1,3

)
K

(
z−Zℓ

h1 ̸=2
Z,3

)
1

h1 ̸=2
1,2

1

h1 ̸=2
Z,2

∑
ℓ∈L1̸=2

I
K

(
b1−Bmax

1ℓ

h1 ̸=2
1,2

)
K

(
z−Zℓ

h1 ̸=2
Z,2

)∑ℓ∈L1 ̸=2
I

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

) .

(40)

If I use (39), we have a simpler form of the estimator as follows.

P̂r [Bmax
2 = b2, D = 1 | Bmax

1 = b1, z, I] =
(35)

(36)
(37)

=
∑

ℓ∈L1=2
I

λ1=2
ℓ (b1)

1

h1=2
2,3

K

(
b2 −Bmax

2ℓ

h1=2
2,3

)
. (41)

Up to now, I’ve gone through a process to make the estimator of (34), namely (41). Employing
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the same process, I can come up with the following estimators.

m̂w
2 (b2|b1, z, I) ≡ P̂r[Bmax

2 = b2,W2 = W1|Bmax
1 = b1, z, I]

=
∑

ℓ∈L1=2
I

λ1=2
ℓ (b1)

1

h1=2
2,3

K

(
b2 −Bmax

2ℓ

h1=2
2,3

)
, (42)

M̂w
2 (b2|b1, z, I) ≡ P̂r[Bmax

2 ≤ b2,W2 = W1|Bmax
1 = b1, z, I]

=
∑

ℓ∈L1=2
I

λ1=2
ℓ (b1)

∫ b2

−∞

1

h1=2
2,3

K

(
x−Bmax

2ℓ

h1=2
2,3

)
dx︸ ︷︷ ︸

K
1=2
2ℓ (b2)

, (43)

m̂l
2(b2|b1, z, I) ≡ P̂r[Bmax

2 = b2,W2 ̸= W1|Bmax
1 = b1, z, I]

=
∑

ℓ∈L1̸=2
I

λ1 ̸=2
ℓ (b1)

1

h1 ̸=2
2,3

K

(
b2 −Bmax

2ℓ

h1 ̸=2
2,3

)
, (44)

M̂ l
2(b2|b1, z, I) ≡ P̂r[Bmax

2 ≤ b2,W2 ̸= W1|Bmax
1 = b1, z, I]

=
∑

ℓ∈L1̸=2
I

λ1 ̸=2
ℓ (b1)

∫ b2

−∞

1

h1 ̸=2
2,3

K

(
x−Bmax

2ℓ

h1 ̸=2
2,3

)
dx︸ ︷︷ ︸

K
1 ̸=2
2ℓ (b2)

, (45)

where (42)-(45) constitute other estimators in the following appendices C.2-C.10. Equations
(43) and (45) are comparable to the estimators (18) and (19).

The following (46)-(48) are also used in the following subsections — before I describe about
(46)-(48), I mention the following equality,

Pr[Bmax
2 = b2|Bmax

1 = b1, z, I] =
Pr[Bmax

2 = b2, B
max
1 = b1, z, I]

Pr[Bmax
1 = b1, z, I]

=
Pr[Bmax

2 = b2, B
max
1 = b1, z|I]

Pr[Bmax
1 = b1, z|I]

.

(46) employs the equality above as shown below.

ĝBmax
2 |Bmax

1
(b2 | b1, z, I) ≡ P̂r[Bmax

2 = b2 | Bmax
1 = b1, z, I]

=

1
LIh2,3h1,3hZ,3

∑
ℓ∈LI

K
(
b2−Bmax

2ℓ
h2,3

)
K
(
b1−Bmax

1ℓ
h1,3

)
K
(
z−Zℓ
hZ,3

)
1

LIh1,2hZ,2

∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
=
∑
ℓ∈LI

λℓ(b1)
1

h2,3
K

(
b2 −Bmax

2ℓ

h2,3

)
, (46)

where λℓ(b1) inside (46) denotes the following.

λℓ(b1) =

1
h1,3

1
hZ,3

K
(
b1−Bmax

1ℓ
h1,3

)
K
(
z−Zℓ
hZ,3

)
1

h1,2

1
hZ,2

∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

) . (47)

Note that if I erase all the superscripts ‘1 = 2’ in (39), we get (47). Given (46) we can define
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(48) as follows.

ĜBmax
2 |Bmax

1
(b2 | b1, z, I) ≡ P̂r[Bmax

2 ≤ b2|Bmax
1 = b1, z, I]

=
∑
ℓ∈LI

λℓ(b1)

∫ b2

−∞

1

h2,3
K

(
x−Bmax

2ℓ

h2,3

)
dx︸ ︷︷ ︸

K2ℓ(b2)

, (48)

which compares to the estimator (17).

C.2 Derivations of (16), Ĝ1(·|z, I), and ĝ1(·|z, I)

[Back to ToC] Note the following equality.

Pr[Bmax
1 = b1|z, I] =

Pr[Bmax
1 = b1, Z = z, I]

Pr[Z = z, I]
=

Pr[Bmax
1 = b1, Z = z|I]
Pr[Z = z|I]

.

Given the quality, I can come up with the following estimators.

ĝmax
1 (b1|z, I) ≡ P̂r[Bmax

1 = b1|z, I] =
1

h1,2hZ,2

∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
1

hZ,1

∑
ℓ∈LI

K
(
z−Zℓ
hZ,1

)
=
∑
ℓ∈LI

ωℓ
1

h1,2
K

(
b1 −Bmax

1ℓ

h1,2

)
, (49)

Ĝmax
1 (b1 | z, I) ≡ P̂r[Bmax

1 ≤ b1|z, I]

=
∑
ℓ∈LI

ωℓ

∫ b1

−∞

1

h1,2
K

(
x−Bmax

1ℓ

h1,2

)
dx︸ ︷︷ ︸

K1ℓ(b1)

, (50)

Ĝ1(b1 | z, I) =
(
Ĝmax

1 (b1 | z, I)
)1/I

=

∑
ℓ∈LI

ωℓK1ℓ(b1)

1/I

, (51)

ĝ1(b1 | z, I) =
1

I

∑
ℓ∈LI

ωℓK1ℓ(b1)

(1−I)/I ∑
ℓ∈LI

ωℓ
1

h1,2
K

(
b1 −Bmax

1ℓ

h1,2

)
, (52)

where ωℓ that first appeared in (49) is defined as follows.

ωℓ ≡
1

hZ,2
K
(
z−Zℓ
hZ,2

)
1

hZ,1

∑
ℓ∈LI

K
(
z−Zℓ
hZ,1

)
C.3 Derivations of Ĝw

2|1(·|b1, z, I) and ĜBl
2(b1)

(·|B1 ≤ b1, z, I)

[Back to ToC] Using equation (11), the plug-in estimator of Gw
2|1(b2|b1, z, I) is as follows.

Ĝw
2|1 (b2 | b1, z, I) = exp

{
−
∫ +∞

−∞

1 [b2 ≤ b]

ĜBmax
2 |Bmax

1
(b|b1, z, I)

m̂w
2 (b | b1, z, I) db

}
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= exp

−
∫ +∞

b2

∑
ℓ∈L1=2

I
λ1=2
ℓ (b1)

1
h1=2
2,3

K

(
b−Bmax

2ℓ

h1=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)
db


=

∏
ℓ∈L1=2

I

exp

−
λ1=2
ℓ (b1)

h1=2
2,3

∫ +∞

b2

K

(
b−Bmax

2ℓ

h1=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)
db

 . (53)

Using equation (12), the plug-in estimator of GBl
2(b1)

(b2|B1 ≤ b1, z, I) is as follows.

ĜBl
2(b1)

(b2|B1 ≤ b1, z, I) = exp
{
− 1

I − 1

∫ +∞

−∞

1 [b2 ≤ b]

ĜBmax
2 |Bmax

1
(b|b1, z, I)

m̂l
2 (b | b1, z, I) db

}

= exp

− 1

I − 1

∫ +∞

b2

∑
ℓ∈L1 ̸=2

I
λ1 ̸=2
ℓ (b1)

1

h1 ̸=2
2,3

K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)
db


=

∏
ℓ∈L1 ̸=2

I

exp

−
λ1 ̸=2
ℓ (b1)

h1 ̸=2
2,3 (I − 1)

∫ +∞

b2

K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)
db

 . (54)

C.4 Derivation of ∂ĜBl
2(b1)

(·|B1 ≤ b1, z, I)/∂b1

[Back to ToC] We will need the following estimator, namely the derivative of (54) with respect
to the first auction winning bid, in the following subsections:

∂ĜBl
2(b1)

(b2 | B1 ≤ b1, z, I)

∂b1

=
∂

∂b1
exp

− 1

I − 1

∫ +∞

b2

∑
ℓ∈L1 ̸=2

I
λ1 ̸=2
ℓ (b1)

1

h1 ̸=2
2,3

K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)
db


= −Ĝl

2|Bmax
1

(b2 | b1, z, I)
1

h1 ̸=2
2,3 (I − 1)

∫ +∞

b2

∂

∂b1


∑

ℓ∈L1̸=2
I

λ1 ̸=2
ℓ (b1)K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)

 db


= −Ĝl

2|Bmax
1

(b2 | b1, z, I)
1

h1 ̸=2
2,3 (I − 1)

×

∫ +∞

b2

(∑
ℓ∈L1 ̸=2

I

∂λ1 ̸=2
ℓ (b1)

∂b1
K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)
ĜBmax

2 |Bmax
1

(b|b1, z, I)(
ĜBmax

2 |Bmax
1

(b|b1, z, I)
)2 −

∑
ℓ∈L1 ̸=2

I
λ1 ̸=2
ℓ (b1)K

(
b−Bmax

2ℓ

h1 ̸=2
2,3

)(∑
ℓ∈LI

∂λℓ(b1)
∂b1

K2ℓ(b)
)

(
ĜBmax

2 |Bmax
1

(b|b1, z, I)
)2

)
db (55)
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As you can see from (55), there are two terms, ∂λ1 ̸=2
ℓ (b1)/∂b1 and ∂λℓ(b1)/∂b1. First, ∂λℓ(b1)/∂b1

is as follows by noting (47).

∂λℓ(b1)

∂b1
=

∂

∂b1

 1
h1,3

1
hZ,3

K
(
b1−Bmax

1ℓ
h1,3

)
K
(
z−Zℓ
hZ,3

)
1

h1,2

1
hZ,2

∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)


=

1
h1,3

1
hZ,3

1
h1,2

1
hZ,2

( 1
h1,3

k
(
b1−Bmax

1ℓ
h1,3

)
K
(
z−Zℓ
hZ,3

)∑
ℓ∈LI

K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
(∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

))2
−

K
(
b1−Bmax

1ℓ
h1,3

)
K
(
z−Zℓ
hZ,3

)
1

h1,2

∑
ℓ∈LI

k
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
(∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

))2
)

= λℓ(b1)

 1
h1,3

k
(
b1−Bmax

1ℓ
h1,3

)
K
(
b1−Bmax

1ℓ
h1,3

) −
1

h1,2

∑
ℓ∈LI

k
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
∑

ℓ∈LI
K
(
b1−Bmax

1ℓ
h1,2

)
K
(
z−Zℓ
hZ,2

)
 . (56)

Regarding ∂λ1 ̸=2
ℓ (b1)/∂b1, we should use (40). But since the right-hand side of (40) has many

terms, writing a closed form of ∂λ1 ̸=2
ℓ (b1)/∂b1 is demanding. Thus, we may consider using the

following numerical derivative for ∂λ1 ̸=2
ℓ (b1)/∂b1:

∂λ1 ̸=2
ℓ (b1)

∂b1
=

λ1 ̸=2
ℓ (b1 + ε)− λ1 ̸=2

ℓ (b1)

ε
, (57)

where ε is some small number. For the future use, I can also define the numerical derivative for
∂λ1=2

ℓ (b1)/∂b1:

∂λ1=2
ℓ (b1)

∂b1
=

λ1=2
ℓ (b1 + ε)− λ1=2

ℓ (b1)

ε
, (58)

where λ1=2
ℓ (b1) is defined in (39).

C.5 Derivations of ĝw2|1 (·|b1, z, I) and ĝBl
2(b1)

(·|B1 ≤ b1, z, I)

[Back to ToC] Recall the equation (53), namely Ĝw
2|1 (b2|b1, z, I) — taking the derivative of both

sides with respect to b2 yields the following estimator.

ĝw2|1 (b2|b1, z, I) =
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
Ĝw

2|1 (b2 | b1, z, I) (59)

Also, recall (54), namely ĜBl
2(b1)

(b2|B1 ≤ b1, z, I), and take the derivative of both sides with
respect to b2 — it yields the following estimator.

ĝBl
2(b1)

(b2|B1 ≤ b1, z, I) =
1

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

ĜBl
2(b1)

(b2|B1 ≤ b1, z, I) (60)

Note that the right-hand sides of (59) and (60) consist of the estimators that we already know
from C.1-C.3.
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C.6 Derivations of ξ̂w2 (·, b1; z, I) and ξ̂l2(·, b1; z, I)

[Back to ToC] Given that the function ξw2 is defined in equation (5), its plug-in estimator ξ̂w2 is
as follows:

ξ̂w2 (b2, b1; z, I) = b2 +
ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−1

∂ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)I−1/∂b2

= b2 +
ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−1

m̂l
2(b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)

ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−1

= b2 +
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
m̂l

2 (b2 | b1, z, I)

= b2 +

∑
ℓ∈LI

λℓ(b1)K2ℓ(b2)∑
ℓ∈L1 ̸=2

I
λ1 ̸=2
ℓ (b1)

1

h1 ̸=2
2,3

K

(
b2−Bmax

2ℓ

h1̸=2
2,3

) , (61)

where the second equality of (61) holds by following derivation:

∂ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−1/∂b2

= (I − 1)ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−2ĝBl

2(b1)
(b2|B1 ≤ b1, z, I)

= (I − 1)ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−2 1

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)

=
m̂l

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−1, (62)

where the second equality holds by (60).
Given that the function ξl2 is defined in equation (6), its plug-in estimator ξ̂l2 is as follows:

ξ̂l2(b2, b1; z, I) = b2 +
Ĝw

2|1(b2|b1, z, I)ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−2

∂(Ĝw
2|1(b2|b1, z, I)ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)I−2)/∂b2

= b2 +
1

m̂w
2 (b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)

+ I−2
I−1

m̂l
2(b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)

, (63)

where the last equality of (63) holds by the following derivation:

∂(Ĝw
2|1(b2|b1, z, I)ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−2)/∂b2

= ĝw2|1(b2 | b1, z, I)ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−2

+ Ĝw
2|1(b2 | b1, z, I)(I − 2)ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−3ĝBl
2(b1)

(b2|B1 ≤ b1, z, I)

= Ĝw
2|1(b2 | b1, z, I)ĜBl

2(b1)
(b2|B1 ≤ b1, z, I)

I−2

×

(
ĝw2|1(b2 | b1, z, I)

Ĝw
2|1(b2 | b1, z, I)

+ (I − 2)
ĝBl

2(b1)
(b2|B1 ≤ b1, z, I)

ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)

)
= Ĝw

2|1(b2 | b1, z, I)ĜBl
2(b1)

(b2|B1 ≤ b1, z, I)
I−2
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×

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
+

I − 2

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

)
, (64)

where the third equality holds by (59) and (60).

C.7 Derivation of P̂r[δ(v1, V2) ≤ ·|V1 = v1, z, I ]

[Back to ToC] The plug-in estimator of Pr[δ(v1, V2) ≤ ·|V1 = v1, z, I] by noting equation
(15) is as follows: B.4 shows the equivalence between the ‘Pr[δ(v1, V2) ≤ ·|V1 = v1, z, I]’ and
‘Pr[δ̃(B1, V2) ≤ ·|B1 = b1, z, I] = Pr[δ(ξ1(B1), V2) ≤ ·|B1 = b1, z, I].’

P̂r[δ(v1, V2) ≤ d|V1 = v1, z, I]

=

∫ b2

b2

1
[
ξ̂w2 (x, b1; z, I) ≤ d

]
dĜw

2|1 (x|b1, z, I) , (65)

which consumes a lot of time in implementing Monte Carlo simulation. A less time-consuming
approach for the estimator P̂r[δ(v1, V2) ≤ d|V1 = v1, z, I] uses the monotonicity of ξw2 in
b2. Because of the monotoncity, in an ideal situation, there exists a unique bw,∗(d; b1) ≡
bw,∗(d; b1, z, I) ∈ [b2, b2] for some d such that it satisfies the following,56

ξ̂w2 (bw,∗(d; b1), b1; z, I)

≡ bw,∗(d; b1) +

∑
ℓ∈LI

λℓ(b1)K2ℓ (b
w,∗(d; b1))∑

ℓ∈L1 ̸=2
I

λ1 ̸=2
ℓ (b1)

1

h1 ̸=2
2,3

K

(
bw,∗(d;b1)−Bmax

2ℓ

h1 ̸=2
2,3

)
= d. (66)

But, since ξ̂w2 (x, b1; z, I) is the empirical analog of ξw2 (x, b1; z, I), the empirical analog(or esti-
mate) may not necessarily be strictly increasing in b2 and so bw,∗(d; b1) may not be unique.
Thus, I define b̂w,∗(d; b1) as the smallest solution of the following:

b̂w,∗(d; b1) ≡ b̂w,∗(d; b1, z, I) ≡ argmin
x

(
ξ̂w2 (x, b1; z, I) − d

)2
.

Then, b̂w,∗(d; b1) will always be a unique number for some d, so we can transform (65) into the
following estimator:

P̂r[δ(v1, V2) ≤ d|V1 = v1, z, I] = Ĝw
2|1

(
b̂w,∗(d; b1)|b1, z, I

)
, (67)

whose calculation is faster than that of (65).
56Each bw,∗(d; b1)− ε and bw,∗(d; b1) + ε will cause “< d”, “> d” respectively in (66).
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C.8 Derivation of P̂r[V2 ≤ ·|V1 = v1, z, I ]

[Back to ToC] The plug-in estimator of Pr[V2 ≤ v2|V1 = v1, z, I] by noting equation (14) is as
follows:

P̂r[V2 ≤ v2|V1 = v1, z, I]

= P̂r[V2 ≤ v2|B1 = b1, z, I]

= P̂r[V2 ≤ v2|B1 ≤ b1, z, I] +
Ĝ1(b1|z, I)
g1(b1|z, I)

(
∂

∂b1
P̂r[V2 ≤ v2|B1 ≤ b1, z, I]

)
=

∫ b2

b2

1
[
ξ̂l2(x, b1; z, I) ≤ v2

]
dĜBl

2(b1)
(x|B1 ≤ b1, z, I)

+
Ĝ1(b1|z, I)
g1(b1|z, I)

(
∂

∂b1

∫ b2

b2

1
[
ξ̂l2(x, b1; z, I) ≤ v2

]
dĜBl

2(b1)
(x|B1 ≤ b1, z, I)

)
. (68)

But, both integrals inside (68) cause heavy computational burden. Thus, a less-time consuming
approach for the estimator P̂r[V2 ≤ v2|V1 = v1, z, I] uses the monotonicity of ξl2 in b2, which is
analogous to what I did in C.7. Because of the monotoncity, in an ideal situation, there exists
a unique bl,∗(v2; b1) ≡ bl,∗(v2; b1, z, I) ∈ [b2, b2] for some v2 such that it satisfies the following,

ξ̂l2(b
l,∗(v2; b1), b1; z, I)

≡ bl,∗(v2; b1) +
1

m̂w
2 (bl,∗(v2;b1)|b1,z,I)

ĜBmax
2 |Bmax

1
(bl,∗(v2;b1)|b1,z,I)

+ I−2
I−1

m̂l
2(bl,∗(v2;b1)|b1,z,I)

ĜBmax
2 |Bmax

1
(bl,∗(v2;b1)|b1,z,I)

= v2. (69)

But, since ξ̂l2(x, b1; z, I) is the empirical analog of ξl2(x, b1; z, I), the empirical analog(or estimate)
may not necessarily be strictly increasing in b2 and so bl,∗(v2; b1) may not be unique. Thus, I
define b̂l,∗(v2; b1) as the smallest solution of the following:

b̂l,∗(v2; b1) ≡ b̂l,∗(v2; b1, z, I) ≡ argmin
x

(
ξ̂l2(x, b1; z, I) − v2

)2
.

Then, b̂l,∗(v2; b1) will always be a unique number, so we can transform both integrals inside the
right-hand side of (68) as follows:

P̂r[V2 ≤ v2|V1 = v1, z, I]

= ĜBl
2(b1)

(
b̂l,∗(v2; b1) | B1 ≤ b1, z, I

)
+

Ĝ1(b1|z, I)
g1(b1|z, I)

(
∂

∂b1
ĜBl

2(b1)

(
b̂l,∗(v2; b1) | B1 ≤ b1, z, I

))
= ĜBl

2(b1)

(
b̂l,∗(v2; b1) | B1 ≤ b1, z, I

)
+

Ĝ1(b1|z, I)
ĝ1(b1|z, I)

(
ĝBl

2(b1)
(b̂l,∗(v2; b1) | B1 ≤ b1, z, I)

∂b̂l,∗(v2; b1)

∂b1
+

∂

∂b1
ĜBl

2(b1)

(
b̂l,∗ | B1 ≤ b1, z, I

))
, (70)

64



where the second equality holds by the chain rule. All the estimators in the right-hand side of
(70) have been defined in C.1-C.7 except ∂b̂l,∗(v2;b1)

∂b1
; I derive it in the following mini section.

C.8.1 Derivation of ∂b̂l,∗(v2; b1)/∂b1

[Back to ToC] Recall that the value ξl2
(
bl,∗(v2; b1), b1; z, I

)
and the value v2 must be the same.

Thus, I can come up with the following new notation:

ξl2

(
bl,∗(v2; b1), b1; z, I

)
− v2 = 0 ⇐⇒ ϕ(v2, b1, z, I) = 0.

I introduced a new notation, ϕ(v2, b1, z, I), to invoke Implicit Function Theorem — take a
derivative of the left-hand side and the right-hand side of ‘ϕ(v2, b1, z, I) = 0’ with respect to b1,
then we have the following:

∂

∂b1
ϕ(v2, b1, z, I) = 0

⇐⇒
(

∂

∂b2
ξl2(b

l,∗, b1; z, I)

)(
∂

∂b1
bl,∗(v2; b1)

)
+

∂

∂b1
ξl2(b

l,∗, b1; z, I) = 0

⇐⇒ ∂

∂b1
bl,∗(v2; b1) = − ∂

∂b1
ξl2(b

l,∗, b1; z, I)
/ ∂

∂b2
ξl2(b

l,∗, b1; z, I).

Now we have a closed form solution of ∂
∂b1

bl,∗(v2; b1) which consists of ∂
∂b1

ξl2(b̂
l,∗, b1; z, I) and

∂
∂b2

ξl2(b̂
l,∗, b1; z, I). Since ξ̂l2(b2, b1; z, I) = (63), we have the following estimators.

∂ξ̂l2(b2, b1; z, I)/∂b1

=
∂

∂b1

b2 +
1

m̂w
2 (b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)

+ I−2
I−1

m̂l
2(b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)


=

∂

∂b1

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
+

I − 2

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

)−1

= −

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
+

I − 2

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

)−2

×(
∂

∂b1

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)

)
+

I − 2

I − 1

∂

∂b1

(
m̂l

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)

))
, (71)

∂ξ̂l2(b2, b1; z, I)/∂b2

=
∂

∂b2

b2 +
1

m̂w
2 (b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)

+ I−2
I−1

m̂l
2(b2|b1,z,I)

ĜBmax
2 |Bmax

1
(b2|b1,z,I)


= 1 +

∂

∂b2

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
+

I − 2

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

)−1

= 1−

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
+

I − 2

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

)−2

×
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(
∂

∂b2

(
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)

)
+

I − 2

I − 1

∂

∂b2

(
m̂l

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)

))
. (72)

Given (71) and (72), the plug-in estimator ∂
∂b1

b̂l,∗(v2; b1) is as follows.

∂

∂b1
b̂l,∗(v2; b1)

= − ∂

∂b1
ξ̂l2(b̂

l,∗, b1; z, I)
/ ∂

∂b2
ξ̂l2(b̂

l,∗, b1; z, I) = −(71)/(72)

=

1⃝ ×
(

∂
∂b1

(
m̂w

2 (b̂l,∗|b1,z,I)
ĜBmax

2 |Bmax
1

(b̂l,∗|b1,z,I)

)
+ I−2

I−1
∂
∂b1

(
m̂l

2(b̂l,∗|b1,z,I)
ĜBmax

2 |Bmax
1

(b̂l,∗|b1,z,I)

))
1− 1⃝ ×

(
∂
∂b2

(
m̂w

2 (b̂l,∗|b1,z,I)
ĜBmax

2 |Bmax
1

(b̂l,∗|b1,z,I)

)
+ I−2

I−1
∂
∂b2

(
m̂l

2(b̂l,∗|b1,z,I)
ĜBmax

2 |Bmax
1

(b̂l,∗|b1,z,I)

)) (73)

where 1⃝ ≡

 m̂w
2

(
b̂l,∗ | b1, z, I

)
ĜBmax

2 |Bmax
1

(
b̂l,∗ | b1, z, I

) +
I − 2

I − 1

m̂l
2

(
b̂l,∗ | b1, z, I

)
ĜBmax

2 |Bmax
1

(
b̂l,∗ | b1, z, I

)
−2

.

To calculate (73), we need the following estimators.

∂m̂w
2 (b2|b1, z, I)/∂b2 =

∑
ℓ∈L1=2

I

λ1=2
ℓ (b1)

(
1

h1=2
2,3

)2

k

(
b2 −Bmax

2ℓ

h1=2
2,3

)
,

∂m̂w
2 (b2|b1, z, I)/∂b1 =

∑
ℓ∈L1=2

I

∂λ1=2
ℓ (b1)

∂b1

1

h1=2
2,3

K

(
b2 −Bmax

2ℓ

h1=2
2,3

)
,

∂m̂l
2(b2|b1, z, I)/∂b2 =

∑
ℓ∈L1 ̸=2

I

λ1 ̸=2
ℓ (b1)

(
1

h1≠2
2,3

)2

k

(
b2 −Bmax

2ℓ

h1 ̸=2
2,3

)
,

∂m̂l
2(b2|b1, z, I)/∂b1 =

∑
ℓ∈L1 ̸=2

I

∂λ1 ̸=2
ℓ (b1)

∂b1

1

h1 ̸=2
2,3

K

(
b2 −Bmax

2ℓ

h1 ̸=2
2,3

)
,

∂ĜBmax
2 |Bmax

1
(b2 | b1, z, I) /∂b2 = (46) =

∑
ℓ∈LI

λℓ(b1)
1

h2,3
K

(
b2 −Bmax

2ℓ

h2,3

)
,

∂ĜBmax
2 |Bmax

1
(b2 | b1, z, I) /∂b1 =

∑
ℓ∈LI

∂λℓ(b1)

∂b1
K2ℓ(b2),

where (56), (57), and (58) are used in these six estimators.
Equation (73) shows us that the close-form expression of the estimator ∂

∂b1
b̂l,∗(v2; b1) is

complicated. Instead, I could come up with a numerical derivative as follows:

∂

∂b1
b̂l,∗(v2; b1)

= − ∂

∂b1
ξ̂l2(b̂

l,∗, b1; z, I)
/ ∂

∂b2
ξ̂l2(b̂

l,∗, b1; z, I) = −

(
ξ̂l2(b̂l,∗,b1+ε;z,I)−ξ̂l2(b̂l,∗,b1;z,I)

ε

)
(

ξ̂l2(b̂l,∗+ε,b1;z,I)−ξ̂l2(b̂l,∗,b1;z,I)
ε

) , (74)

where ε is some small number.
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C.9 Estimation of a function δ

[Back to ToC] B.5 shows both the original and the alternative identification strategy for the
function δ. If I were to choose the original strategy, then coming up with the estimator δ̂ is as
follows; I borrow notations from B.5.

✓ Make a grid of α. Then for each α in the grid, compute the quantiles v̂2|1(α|b1, z, I) by
using (68) or (70) — this will be computationally taxing. Also, for each α compute the
quantiles ˆ̃

d2|1(α|b1, z, I) defined as follows.

ˆ̃
d2|1(α|b1, z, I) = ξ̂w2

(
b̂w2|1(α|b1, z, I), b1; z, I

)
, (75)

where (75) is the plug-in estimator of d̃2|1(α|b1) = ξw2 (b
w
2|1(α|b1), b1), which I also used in

(33). ξ̂w2 (·, ·; ·, ·) is already defined in (61), and b̂w2|1(α|b1, z, I) stands for the α-quantile of
Ĝw

2|1(·|b1, z, I) from (53), which is as follows.

b̂w2|1(α|b1, z, I) ≡ argmin
x

(
Ĝw

2|Bmax
1

(x|b1, z, I) − α
)2

.

Given v̂2|1(α|b1, z, I) and ˆ̃
d2|1(α|b1, z, I) for each value of αs, I can compare them and

nonparametrically estimate a function ˆ̃
δ(b1, v2, z, I). Since the estimator is dependent on

the value of I, I can come up with the following estimator.

ˆ̃
δ(b1, v2, z) =

1∑N
Ĩ=2

LĨ

×
N∑
I=2

(
LI × ˆ̃

δ(b1, v2, z, I)
)
, (76)

where LI is the number of auction pairs with I bidders. What (76) does is doing the
weighted average of ˆ̃δ(b1, v2, z, I) to get ˆ̃

δ(b1, v2, z).

The same estimator δ̂ exploiting alternative strategy is as follows.

✓ Make a grid of b2. Then for each b2 in the grid, apply ξ̂l2(b2, b1; z, I) = (63) so that
we now have the grid of ξ̂l2(b2, b1; z, I). For this new grid, evaluate each grid point with
ˆ̃F2|1(·|b1, z, I) = (70) so that now you have grid of α. Given this grid of α, do (75) so
that you get the grid of ˆ̃

d2|1(α|b1, z, I). Now, compare ‘the grid of ξ̂l2(b2, b1; z, I)’ with ‘the
grid of ˆ̃d2|1(α|b1, z, I)’ so that you nonparametrically estimate ˆ̃δ(b1, v2, z, I), and exploiting
(76) finishes the estimation.

C.10 Derivations of ξ̂1(·; z, I) and F̂1(·|z, I)

[Back to ToC] C.1-C.8 introduced all the estimators that constitute the plug-in estimator of a
function ξ1; namely, replacing all the bid distribution in (9) with its estimators produces ξ̂1.

I construct the estimator F̂1(·|z, I) based on ξ̂1. Identification section asserts V max
1 =

ξ1(B
max
1 ), and because a function ξ1 is monotone, it must be that the α-quantile of V max

1

equals ξ1(α-quantile of Bmax
1 ).

Thus, I first come up with the estimator P̂r[Bmax
1 ≤ ·|z, I], which I already introduced in (16).

Then for any α ∈ [0, 1], I calculate the quantile b̂max
1 (α|z, I) that comes from “argminx(P̂r[Bmax

1 ≤
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α|z, I] − x)2”, and transform it to ξ̂1(b̂
max
1 (α|z, I); z, I), which is the α-quantile of P̂r[V max

1 ≤
·|z, I] = P̂r[V1 ≤ ·|z, I]I . Varying α will pin down all the quantiles of P̂r[V1 ≤ ·|z, I]I , then I
take the I-th root of each α to get P̂r[V1 ≤ ·|z, I] ≡ F̂1(·|z, I).

C.11 Monte Carlo Setting

[Back to ToC] The bid distributions that I started with have the following form:

Gw
2|1(b2|b1) = b

bq1+w
2 , b2, b1 ∈ [0, 1]2

GBl
2(b1)

(b2|B1 ≤ b1) = b
bq1+l
2 , b2, b1 ∈ [0, 1]2

G1(b1) = bp1, b1 ∈ [0, 1] (77)

There are four parameters (p, q, w, l) inside (77), and I assume I = 2. Because bids are restricted
within the unit interval, the supports of both random variables Bmax

1 and Bmax
2 are also unit

interval; moreover, the support of Bmax
2 given some Bmax

1 = b1 is also [0, 1] irrespective of b1.
Condition (i) of Theorem 1 is met because it asserts that the bid distributions must be

absolutely continuous, which holds true under (77). Remaining conditions to be met are (ii)
and (iii), which are the reason why I had to come up with parameter values (q = 1

70 , p = 0.5,
l = 0.2, w = 0.1); descriptive statistics coming from (77) given the parameters are shown in
C.11.1.

Why should the parameter q be a small number? — It has to do with condition (ii), which
asserts that GBl

2(b)|b
(·|b) derived from equation (10) must be a valid distribution. C.11.2 shows

that GBl
2(b)|b

(·|b) is the same as F2|1(·|v1), implying that guaranteeing the validity of GBl
2(b)|b

(·|b)
is equivalent to guaranteeing the validity of F2|1(·|v1).

Given (77), equation (10) outputs the following function.

GBl
2(b1)|B1

(b2|b1) =
b1
p

(
bq−1
1 b

bq1+l
2 q log (b2)−

−bq−1
1 qb2b

bq1+l−1
2 (bq1 + l)

b2q1 + 2bq1w + bq1 + w2 + w

)
+ b

bq1+l
2 , (78)

whose terms have one-to-one relationship with those in (10): red corresponds to GBl
2(b1)

(b2|B1 ≤
b1); blue corresponds to G1(b1)/g1(b1); teal corresponds to ∂GBl

2(b1)
(b2|B1 ≤ b1)/∂b1; purple

corresponds to ∂ξl2(b2;b1)/∂b1
∂ξl2(b2;b1)/∂b2

; orange corresponds to ∂GBl
2(b1)

(b2|B1 ≤ b1)/∂b2 = gBl
2(b1)

(b2|B1 ≤
b1).
I can rearrange (78) as follows.

GBl
2(b1)|B1

(b2|b1) =
b1

q

p

(
b2

b1q+lq log (b2) + q
b2

b1q+l (b1
q + l)

(b1q + w)(b1q + w + 1)

)
+ b2

b1q+l, (79)

where I use red and blue colors for b2 and b1 in (79); some description about follows.

1. If b1 = 0, then (79) becomes bl2, so (77) outputs a valid distribution, unless l = 0.
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2. If b1 = 1, then (79) becomes as follows.

GBl
2(1)|B1

(b2|1) =
1

p

(
b1+l
2 q log (b2) + q

b1+l
2 (1 + l)

(1 + w)(1 + w + 1)

)
+ b1+l

2 .

As b2 ↓ 0, we have 0. As b2 ↑ 1, we get the following result.

1

p

(
q

(1 + l)

(1 + w)(1 + w + 1)

)
︸ ︷︷ ︸+1,

which is larger than 1, as long as [p, q, w, l] have values larger than or equal to 0; if q gets
small or w gets large, then the underbrace gets closer to zero but never exactly zero.

3. If b1 ∈ (0, 1), then (79) still maintains its form. As b2 ↓ 0, the whole equation becomes 0,
and as b2 ↑ 1, (79) becomes as follows.

bq1
p

(
q

(bq1 + l)

(bq1 + w)(bq1 + w + 1)

)
︸ ︷︷ ︸+1,

where the underbrace is positive, so the whole is larger than 1. To make the underbrace
zero, we can consider the following measures:

• Let p be a very large number: This is undesirable because, say p = 100, then we will
have G1(b1) = b1001 , which outputs the first auction bids that are very close to 1; it
worsens the Monte Carlo simulation.

• Let w be a very large number: This is also undesirable because, say w = 3, then we
will have Gw

2|Bmax
1

(b2|b1) = b
bq1+3
2 , which outputs Bw

2 s that are very close to 1; it also
worsens the Monte Carlo simulation.

• Let q be a very small number: This is desirable, so I choose this route.

Thus, what I want to conclude from (79) is that, both underbraces must be zero to make (79)
a valid distribution. Making those exactly zero is possible when q = 0, but it nullifies the effect
of the first auction bid as can be seen from (77).
This is why I choose a small value for q, such as 1/70, even though it does not perfectly satisfy
condition (ii) of Theorem 1.

Remaining parameters, p, l, and w — However, with a suitable choice for the values of
remaining parameters [p, l, w], the distribution coming from (79) appear to be a valid distribution
shown in figure below.

69



Figure — GBl
2(b1)|B1

(·|b1) for five values of b1

Values for the remaining parameters are set at p = 0.5, l = 0.2, and w = 0.1, which I
describe below.

• p = 0.5: Now G1(b1) inside (77) becomes b0.51 , so the density of Bmax
1 is not skewed toward

the upper bound of b1, namely 1 — this enhances Monte Carlo simulation.

• (l = 0.2, w = 0.1): Both l and w shouldn’t be too large, say 100 and 200. It is because
(77) given the large values output bl2 and bw2 that are very close to 1; it worsens the Monte
Carlo simulation. This is why I chose small values for l and w.

Moreover, under (77) I get the following functions for ξw2 and ξl2.

ξl2(b2, b1) = b2 +
b2

bq1 + w
, (80)

ξw2 (b2, b1) = b2 +
b2

bq1 + l
. (81)

We notice that as long as l > w, ξl2 is greater than ξw2 for any given (b1, b2). It is equivalent
to saying that under this setup, v2 is greater than δ̃(b1, v2) for any given b1; this setup
is important since it guarantees ξ1(b1) = v1 > 0 for every b1 — otherwise, if δ̃(b1, v2) is
much greater than v2, I face ξ1(b1) = v1 < 0 for some b1

57. As a result, I decided that l
should be greater than w.

Lastly, if l and w differs much, the Monte Carlo simulation didn’t work well. Thus, I
decided that l and w should be close to each other — this is why I chose l = 0.2 and
w = 0.1.

As a result, the values I set for each parameter is (q = 1
70 , p = 0.5, l = 0.2, w = 0.1), which

transforms (77) to the following distributions.

Gw
2|1(b2|b1) = b

b
1/70
1 +0.1
2 , b2, b1 ∈ [0, 1]2

GBl
2(b1)

(b2|B1 ≤ b1) = b
b
1/70
1 +0.2
2 , b2, b1 ∈ [0, 1]2

57The reason I think we face negative v1 when w ≫ l is that if positive synergy (i.e., complementarity) is very
high, a bidder is willing to bid a positive amount even if his v1 below 0.
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G1(b1) = b0.51 . b1 ∈ [0, 1] (82)

Condition (iii) is satisfied because any positive values for (q, w, l) make both functions ξw2 and
ξl2 from (81) and (80) monotone in b2 for every b1; monotonicity of ξ1 is shown as a solid line
in Figure 3.

I used Python and its packages, such as Numba and Multiprocessing, to boost up its running
time.

Lastly, even with I = 3, finding the adequate bid distributions that satisfy conditions (i)-(iii)
of the model become nearly impossible, which is why I settled down with I = 2. With I = 2,
one could think of substituting Beta or Gamma distributions for the right-hand sides of (77).
But, this substitution outputs extremely noisy Monte Carlo estimates.

C.11.1 Descriptive Statistics

[Back to ToC] Recall what I wrote in 4.1; given (82) in hand, I set the number of samples as
200 and let each sample have 1,000 auction pairs (i.e., L = 1, 000). Thus, I have 200× 1, 000 =

200, 000 observations of Bmax
1 and Bmax

2 — its statistics follows:

• Mean and Standard deviation of Bmax
1 : 0.501 and 0.288

• Mean and Standard deviation of Bmax
2 : 0.695 and 0.223

• Correlation of Bmax
1 and Bmax

2 : 0.01

• A probability that the first auction winner wins the second auction (i.e., L1=2/200, 000):
47.9%

When describing Figures 5 and 6, I noted that V1 and V2 are nearly independent, which is
expressed here as a low correlation of 0.01. Also, the repeated winning rate less than fifty
percent, namely 47.9%, indicates a negative synergy (i.e., substitutability) between V1 and V2,
which is expressed in Figure 6.

The following two figures show the kernel density estimates of Bmax
1 and Bmax

2 : the supports
of both random variables are [0,1], which I once pointed out in (77).

Kernel Density Estimates 2
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Kernel Density Estimates 1

C.11.2 Equivalence of GBl
2(b1)|B1

and F2|1

[Back to ToC] For reference, I copy and paste (10).

GBl
2(b1)|B1

(b2|b1) = GBl
2(b1)

(b2|B1 ≤ b1)

+
G1(b1)

g1(b1)

{
∂GBl

2(b1)
(b2|B1 ≤ b1)

∂b1
− ∂ξl2(b2, b1)/∂b1

∂ξl2(b2, b1)/∂b2
gBl

2(b1)
(b2|B1 ≤ b1)

}
, (83)

where gBl
2(b1)

(b2|B1 ≤ b1) = ∂GBl
2(b1)

(b2|B1 ≤ b1)/∂b2. I also copy and paste (14) for reference.

Pr[V2 ≤ ·|V1 = v1] = Pr[V2 ≤ ·|B1 < b1] +
G1(b1)

g1(b1)

(
∂

∂b1
Pr[V2 ≤ ·|B1 < b1]

)
. (84)

I show the right-hand sides of both equations are equivalent. First, note the following equality,
which I used in C.8 to derive (70).

Pr[V2 ≤ v2 | B1 < b1] = GBl
2(b1)

(
bl,∗(v2; b1) | B1 ≤ b1

)
, (85)

where bl,∗(v2; b1) satisfies ξl2
(
bl,∗(v2; b1), b1

)
= v2. Given (85), I can change the right-hand side of

(84) as follows — for notational simplicity, I use the equality GBl
2(b1)

(·|B1 ≤ b1) = Gl
2|Bmax

1
(·|b1)

that I established in Lemma 1:

Gl
2|Bmax

1

(
bl,∗(v2; b1) | b1

)
+

G1(b1)

g1(b1)

{
∂

∂b1
Gl

2|Bmax
1

(
bl,∗(v2; b1) | b1

)}
= Gl

2|Bmax
1

(
bl,∗(v2; b1) | b1

)
+

G1(b1)

g1(b1)
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×
{
gl2|Bmax

1

(
bl,∗(v2; b1) | b1

) ∂bl,∗(v2; b1)

∂b1
+

∂

∂b1
Gl

2|Bmax
1

(
bl,∗ | b1

)}
= Gl

2|Bmax
1

(
bl,∗(v2; b1) | b1

)
+

G1(b1)

g1(b1)

×
{
−gl2|Bmax

1

(
bl,∗(v2; b1) | b1

) ∂ξl2(b
l,∗, b1)/∂b1

∂ξl2(b
l,∗, b1)/∂b2

+
∂

∂b1
Gl

2|Bmax
1

(
bl,∗ | b1

)}
, (86)

where the first equality holds by the chain rule, and the second equality holds by ∂
∂b1

bl,∗(v2; b1) =

− ∂
∂b1

ξl2
(
bl,∗, b1

)/
∂
∂b2

ξl2
(
bl,∗, b1

)
which I introduced in C.8.1. Given the equality, I can replace

the right-hand side of (84) with (86), which yields the following.

Pr[V2 ≤ v2|V1 = v1] = Gl
2|Bmax

1

(
bl,∗(v2; b1) | b1

)
+

G1(b1)

g1(b1)

{
∂Gl

2|Bmax
1

(
bl,∗ | b1

)
∂b1

− ∂ξl2(b
l,∗, b1)/∂b1

∂ξl2(b
l,∗, b1)/∂b2

gl2|Bmax
1

(
bl,∗(v2; b1) | b1

)}
,

whose right-hand side is the same as the right-hand side of (83).

D Section 5, Application

D.1 About Korean Fruit Auction

[Back to ToC] Even though I used the term ‘Korean Fruit Auction’ for the ease of exposition,
the precise term is ‘Agricultural Produce Auction in Garak Market.’ As the name indicates,
it not only sells fruits but also vegetables, and also is one of the largest agricultural produce
markets, in the following sense:

• As of 2022, thirty-three public wholesale markets account for 99.4%58 of volume and
99.2%59 of value in vegetables and fruits being traded in South Korea. Garak market,
one of thirty-three public wholesale markets, is the leading market in the sense that its
trade volume and value were 2,235,696 tons and $3.848 billion60, which account for 34.5%
and 36.1% of the trade volume and value of thirty-three public wholesale markets.

Garak market is governed by, not only limited to, the following regulations.

• Act on Distribution and Price Stabilization of Agricultural and Fishery Products
(농수산물 유통 및 가격안정에 관한 법률) ≡ A⃝

• Enforcement Decree of the Act on Distribution and Price Stabilization of Agricultural and
Fishery Products (농수산물 유통 및 가격안정에 관한 법률 시행령) ≡ B⃝

• Enforcement Rule of the Act on Distribution and Price Stabilization of Agricultural and
Fishery Products (농수산물 유통 및 가격안정에 관한 법률 시행규칙) ≡ C⃝

• Seoul Metropolitan Government Ordinance on Agricultural and Fishery Products Whole-
sale Markets (서울특별시 농수산물도매시장 조례) ≡ D⃝

586,473,286tons/6,514,595tons
59₩13,863billion/₩13,969billion
60₩5,002.4billion
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• Seoul Metropolitan Government Enforcement Rule of the Ordinance on Agricultural and
Fishery Products Wholesale Markets (서울특별시 농수산물도매시장 조례 시행규칙) ≡ E⃝

One of the objectives of these regulations is to maintain stable price for agricultural products,
mandated by Article 123 (4) of Constitution of the Republic of Korea.

I discuss only the information that seems relevant to this paper — more details can be found
in various Korean reports, which I mention in D.1.5

D.1.1 Market and Auction characteristics

[Back to ToC] 79.6% of 2,235,696 tons, or equivalently 76.7% of $3.848 billion, were sold via
auction. Other means of trading such as bargaining(정가수의매매) or special transaction(상장예

외) exist, but they are not the main channel as they account for 12.3% and 8.1% of transaction
volumes, and 11.2% and 12.1% of transaction values.

Auctions were held 306 days in 2022 (i.e., on Sundays and certain chosen holidays, the
auction is not held). E⃝ stipulates which goods at what time should be sold via auction: I
attach the corresponding part of E⃝ for reference.

I do not translate it into English, but one can see that certain goods should be auctioned
starting from 2:00 am, and other goods from 8:30 am, and etc.

Six auction houses exist under Garak Market: five of them were mentioned in Table 2 and
another one is Daeah. Five houses deal both vegetables and fruits while Daeah only focuses
on vegetables, which is why I exclude it from the analysis. Farmers decide one of six auction
houses and request to sell their product: I do not discuss the details of farmers’ decision.

Given 2,235,696 tons of trade volume in 2022, the following statistics show the percentage
of the trade volume each auction house accounts for, and its daily average trading volume.

• Seoul: 14.7%, 1,071 tons

• Joongang: 14.5%, 1,060 tons

• Donghwa: 17.0%, 1,241 tons
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• Hankook: 17.0%, 1,239 tons

• Daeah: 20.1%, 1,468 tons

• Nonghyup: 8.7%, 634 tons

• Special Transaction: 8.1%, 589 tons

As can be seen from the daily average trading volume, sizable amount of goods has to be sold
on a given day which is why each auction lasts typically three to ten seconds.

Items to be auctioned are delivered to the auction site before the auction begins. For
example, in the case of fruits, since the fruit auction starts at 2:00 am, most items are delivered
by or around 12:00 am. Most fruit bidders begin checking the quality of the items starting
from 12:00 am. At least for fruit bidders, the type and quantity of fruit they need to win are
decided before the auction starts, as things become too hectic during the auction for them to
take orders from their customers.

Since bidders observe the produce to be auctioned before the auction begins, my model―
which assumes that a bidder does not have perfect knowledge of his v2 (i.e., the value in the
last auction) during the first period (i.e., the second-to-last auction)―does not capture the full
reality. Therefore, I needed to verify whether the necessary conditions of my model are satisfied,
as demonstrated in the Application section.

D.1.2 Bidder

[Back to ToC] E⃝ limits the total number of bidders within the Garak Market to be 1,187. Six
auction houses split this number and fill their bidders; the process of splitting remains uncertain,
but is irrelevant to know at least for this paper. Bidders are wholesaler and each has his own
refrigerator in Garak Market; it is known that each bidder has at least five to six customers,
who are mostly retailers or department stores.

When a bidder delivers the items he won in the auction to his customers, the price he
receives from the customers is determined in one of three ways:

1. The bidder sets the price on his own and informs the customer.

2. The bidder discloses the price at which he won the item and negotiates with the customer
on the margin he will receive.

3. The bidder and the customer have a forward contract (typically ranging from one week
to one year), which sets a fixed price that the bidder receives for delivering the item to
the customer.

The first method is used when the transaction volume between the bidder and the customer is
small, while the second and third methods are applied in large volume transactions. It is evident
that there is no common, unanimous price governing how much bidders receive for delivering
the item to the customer, thereby justifying the use of the private value paradigm.

Bidders enter into contracts with one of six auction houses to participate in the auction.
According to a bidder I contacted, they can only contract with one auction house at a time,
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although I could not verify this from sources A⃝- E⃝. While bidders are allowed to switch auction
houses, this rarely occurs, and most of them remain in the same auction house and renew a
contract; source A⃝ specifies that once a bidder signs a contract with an auction house, the
contract duration ranges from three to ten years. Additionally, source E⃝ sets a minimum
monthly transaction value that bidders must meet ―$62,000 (₩80 million) for fruit ―which is
considered non-restrictive, as most bidders are known to easily satisfy this threshold. Due to
this leniency, no bidders were reportedly expelled from any auction houses in 2022.

In general, ninety percent of the fruits or vegetables won by a bidder on a given day is
delivered to their customers, while only ten percent is kept for the bidder’s own use. As said,
each bidder has their own refrigerator within the market, but the size typically ranges from
three to five cubic meters, making it difficult for a bidder to store large quantities of produce
won in a single day. In addition to their individual refrigerators, bidders have access to a large
shared refrigerator to store the items they have won; however, they must pay rental costs to
use it.

According to source E⃝, with some exceptions, a bidder can only purchase fruits or vegetables
from other bidders if they have not yet exceeded 20% of the previous year’s transaction volume.
This regulation is intended to encourage bidders to purchase through auctions, bargaining, or
special transactions, rather than relying on a secondary market between bidders.

Indeed, bidders are asymmetric. Among the 87,349 apple auctions I observe, there are 264
unique winning bidders, and the top 10% (26 bidders) win 33.7% of the auctions. Although my
two-period model assumes that all bidders are symmetric at the start of the first auction, in
reality, the bidders are asymmetric.

Focusing again on the five auction houses that sell fruits, two auction houses, ‘Joongang’
and ‘Donghwa,’ disclose61 that Joongang has 120 veggie bidders and 79 fruit bidders, while
Donghwa has 256 veggie bidders and 98 fruit bidders.

D.1.3 Auctioneer

[Back to ToC] Paragraph 1 of Article 33 in A⃝ specifies that the basic principle for sequencing
the order of objects in an auction follows the order of consignment. However, Paragraph 2 states
that, if necessary for efficient distribution, the wholesale market (i.e., Garak market in our case)
can deviate from the principle outlined in Paragraph 1. It is through this deviation that the
Auction Houses (and the auctioneer who works in one of the Auction Houses) can adjust the
order of items to be auctioned. Article 46 of E⃝ specifies that the auctioneer may prioritize
selling products that are in large quantities or of high quality (further details can be found in
Article 46).

An auctioneer works for one of six auction houses, each typically specializing in a narrow
range of varieties (e.g., selling only fruits but not vegetables). Although I couldn’t get all
the answers to my questions from the auctioneer I contacted, I can safely assume that the
auctioneer usually begins the auction by selling high-quality products, as indicated by D.1.5
and various sources. If high-quality products generally come from Place A, this ordering method
could be seen as discriminating against farmers from other regions. To address this issue, some

61As of Aug 26, 2024
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auctioneers group locations into a few categories and rotate the order daily, so that on some
days produce from Place A is auctioned off first, and on other days, produce from Place B is
auctioned off first.

Typically, if a farmer from Place A requests to sell his produce (e.g., Fuji apples), there are
three to four objects, such as ‘32 boxes of large apples,’ ‘45 boxes of medium apples,’ and ‘56
boxes of small apples.’ Almost always, the auctioneer first auctions off the large apples, followed
by the medium apples, and then the small apples, before moving on to the next farmer from
Place A.

What I gathered from a thread written by an auctioneer is that not all farmers prefer their
produce to be sold earlier in the auction. Typically, when there is a large supply of items to
be sold at auction and farmers anticipate lower winning bids, they generally prefer their items
to be sold earlier. However, in the opposite case, when the supply of items is expected to be
small, farmers tend to prefer that their items be sold in the middle or later part of the auction.

A bidder I contacted told me that a farmer cannot request which auctioneer sells his item
(i.e., the farmer can choose the Auction House, but not a specific auctioneer within that House).
Once the item is sold, the auctioneer notifies the farmer of the winning bid.

As of 2022 (the period covered by my dataset), paper invoices were the predominant means
of communication between bidders and the Auction House. As noted in D.1.5 , this hampers the
Auction House’s ability to make accurate predictions about the type and quantity of produce
expected to arrive the next day or the day after. To address this issue, the government has
been encouraging farmers and Auction Houses to adopt electronic invoices, enabling the Auction
House to make more precise forecasts.

D.1.4 Other Descriptive Statistics or Features of Apple Auction

[Back to ToC] Further information available upon inquiry: I intend to describe how I merged
the two separate datasets.

✓ Reserve Price: One of A⃝- E⃝ states that a farmer can set a reserve price when requesting
his produce to be sold. However, no farmers are known to use this reserve price. If the
produce he requests is not sold at the Garak Market, the farmer either moves it to another
small-sized auction market at his own expense or uses an external refrigerator to keep it
for a day or two before requesting that it be sold again at the Garak Market, also at his
own expense.

Thus, when a farmer requests his produce to be sold at a certain auction house, the
auctioneer typically informs him whether it is a good or bad time to sell. However, the
problem is that even if it is a bad time, a farmer cannot keep his produce for an extended
period because farmers are typically small-sized operations. One of the issues is that the
supply of produce in the Garak Market is volatile, leading to instances where too much
produce enters the market, causing prices to dip (or vice-versa too). Items listed in D.1.5
commonly highlight that “the ability of farmers (or producers) to delay or expedite their
shipment (산지출하물량조절역량)” is weak.

✓ Apple Auctions Start/Ending Time: For each five auction and for each day, I can
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observe the first and the last apple auctions (835 auctions each; I excluded Saturday), lead-
ing me to create the following two figures (in plotting these figures, I excluded Saturdays,
as there are typically fewer apples auctioned on that day).

Density Plot of Starting and Ending Times: Apples

Density Plot of Time Spent on Apple Auctions

The top panel shows the density plots of starting and ending times. The descriptive
statistics are as follows:

— Starting Time: mean(8:04:59), standard deviation(1:22:17), median(8:17:14)

— Ending Time: mean(8:33:11), standard deviation(57:55), median(8:34:23)

The bottom panel shows the density plot of the time spent on apple auctions: 835 obser-
vations that I used represent the time difference between the starting and ending times.

— mean(28:13), standard deviation(1:05:11), median(12:04)
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D.1.5 Korean Reports

[Back to ToC] List of press releases follow:

• 가락시장수산부류 ‘응찰자 가리기’경매 전면 시행 (서울시농수산식품공사,24.6) // 세계최초농산

물온라인도매시장출범 (농림축산식품부,23.11) // 농산물산지유통센터 (APC)스마트화・광역화추

진계획 (농림축산식품부,23.7) // 2022 년 2 월가락시장청과부류거래실적분석 (서울시농수산식품공

사,22.3) // 2022 년가락시장청과부류거래실적 (서울시농수산식품공사,23.2) // 가락시장농산물경

매공정성강화한다 (서울시농수산식품공사,20.11) // 가락시장농산물경매진행방식개선 (서울시농

수산식품공사,20.8) // 농식품부,농산물도매시장유통환경을바꾸겠습니다!(농림축산식품부,23.1) //
먹거리물가안정과함께과수산업경쟁력제고및유통구조개선노력강화 (기획재정부,24.4) // 농산

물도매시장거래제도의쟁점과과제 (국회입법조사처,15.9) // 농수산물유통경로다양화와경쟁촉진

을통해유통비용 10%이상절감 (관계부처합동,24.5)

List of papers or reports follows:

• 명절과일수요및가격분석 (한국농촌경제연구원,16.8) // 농수산물도매시장주요쟁점과정책적함의

(한국농촌경제연구원,21.6) // 농수산물유통구조개선방안 (KDI,24.5) // 2022 년도농수산물도매시

장통계연보 (23.1, 농림축산식품부) // 채소수급및가격안정화방안연구 (한국농촌경제연구원,11.11)
// 전자식경매도입이가락시장의가격효율성에미치는영향분석 (농업경영정책연구제 38 권제 2
호,11.6) // 제 7 차농어업분과위원회결과보고 (대통령직속농어업농어촌특별위원회,21.2) // 세계
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List of symposiums or seminars that I watched follows:

• [NBS 초대석]공영도매시장의올바른개선방향은?순천대농경제학과이춘수교수, 농산물도매시장

의공익적역할재정립을위한심포지엄 (종합본)

Miscellaneous reports, news articles, and miscellaneous videos that I read or watched are ex-
cluded.

Documents and seminars here recommend policies that encourage bidders and farmers to use
bargaining instead of auctions as a main transaction channel, although this approach has not
achieved significant success so far. Introducing a mandatory reserve price as a circuit breaker
has also been considered but was discarded due to the risk of bidders forming a bidding ring to
drive winning bids down to the reserve price level.

D.1.6 Oscillating and Decreasing Winning Bids

[Back to ToC] Figure C below corresponds to Figure 15. Figures A, B, and D to F illustrate
the results when the number of order bins is adjusted or when the simple average of winning
bids within a bin is used.
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Fig. A – 10 order bins; Weighted average win-
ning bid, with the number of boxes in each
auction as the weight.

Fig. B – 10 order bins; Simple average
winning bid.

Fig. C – 20 order bins; Weighted average win-
ning bid, with the number of boxes in each
auction as the weight.

Fig. D – 20 order bins; Simple average
winning bid.

Fig. E – 30 order bins; Weighted average win-
ning bid, with the number of boxes in each
auction as the weight.

Fig. F – 30 order bins; Simple average
winning bid.

We observe that the average winning bid oscillates throughout the day and tends to decline;
the regression results in D.5.3 also show a negative coefficient on the order variable. This decline
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in winning bids is inconsistent with another auction theory62, which predicts that winning bids
should follow a martingale process―oscillating without a downward trend. According to this
theory, the winning bid remains stable because the forces driving it up (i.e., the decreasing
number of remaining objects) and those driving it down (i.e., the decreasing number of bidders)
are perfectly balanced.

The observed decline in winning bids can be attributed to the lower value of the remaining
objects, making bidders less inclined to place higher bids and thereby disrupting the balance.
This decrease in value is related to the sequence in which each object is auctioned. As mentioned
in 5.1, the auctioneer has a certain degree of discretion in setting the auction order and is known
to prioritize high-quality products or those from reputable farmers at the beginning to anchor
bidders’ perceptions. Starting with high-quality products suggests that the quality of items in
the middle and latter parts of the auction is lower than at the beginning. Additionally, objects
auctioned later may experience some deterioration due to inadequate air conditioning at the
auction site, which is why D.1.5 reports similar patterns of decreasing and oscillatory winning
bids for other types of produce.

D.2 Model of Asymmetric Bidders

[Back to ToC] Recall that in the original model, where I bidders are symmetric at the onset of
the auction, the main restrictions are that three functions ξw2 , ξl2 and ξ1 be monotone.

This appendix serves to show that the number of restrictions exponentially increases as the
number of asymmetric bidders also increase. I assume three bidders, {i, j, k}; If I were to expand
it to five or six bidders, still the same logic applies.

The parameters of interest are as follows, which are in contrast with the parameters of the
original model, [F1, F2|1, δ].

• F1i(·), F1j(·), F1k(·), F2|1(·|·), δ(·, ·).

One could replace a set {F2|1(·|·), δ(·, ·)} above with {F2n|1n, δn, n ∈ {i, j, k}}. I assume that I
am a bidder i, and derive equilibrium strategies; if I were to assume either bidders j or k, still
the same logic applies too.

Before specifying equilibrium strategies, I assume that the parameters above are common
knowledge among bidders. This implies that bidder i knows that j and k are subject to F1j ,
F1k, F2|1, and δ.

D.2.1 When i is the first auction winner

[Back to ToC] When bidder i wins the first auction with a winning bid of b̃1i = s̃1(v1i) and
enters the second auction, he has to choose the optimal amount of bw2i — the reason I use tilde
for s̃1 is that at this stage, i’s first bid need not be the equilibrium strategy.

[δ(v1i, v2i)− bw2i] Pr[Bli
2j ≤ bw2i, B

li
2k ≤ bw2i | B1j ≤ b̃1i, B1k ≤ b̃1i, V1i = v1i, V2i = v2i],

62Refer to chapter 15.1.3 of Krishna (2010b) and the first page of Van Den Berg et al. (2001). Indeed, chapter
15.1.3 of Krishna (2010b) assumes a bidder with unit demand, which differs from my setting, but the notion
that the two countervailing forces exactly offsetting each other is what I am concentrating on. The result of this
offsetting is that the path of the winning bid is martingale. Thus, the decline in winning bid is regarded to be
anomalous, which is discussed in Ashenfelter (1989) and Mcafee and Vincent (1993).
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in which Bli
2j denotes that it is bidder j’s second auction bid who lost the first auction to bidder

i. The probability term above is equivalent to the following.

Pr[sl2j(V1j , V2j , b̃1i; {i}) ≤ bw2i, s
l
2k(V1k, V2k, b̃1i; {i}) ≤ bw2i

| s1j(V1j) ≤ b̃1i, s1k(V1k) ≤ b̃1i, V1i = v1i, V2i = v2i] (87)

For example, sl2j(·, ·; {i}) indicates that this equilibrium strategy is for bidder j who faces first
auction winner i. (87) is equivalent to the following:

Pr[sl2j(V1j , V2j , b̃1i; {i}) ≤ bw2i | s1j(V1j) ≤ b̃1i]×

Pr[sl2k(V1k, V2k, b̃1i; {i}) ≤ bw2i | s1k(V1k) ≤ b̃1i] (88)

(88) holds because,

1. The condition {V1i = v1i, V2i = v2i} inside (87) is independent with the random variables
{V1j , V2j , V1k, V2k}, so it can be omitted.

2. After the omission of the condition {V1i = v1i, V2i = v2i}, the only random variables left
are V1j , V2j , V1k, V2k. Note that V1j being less than some number provides no information
about what V1k, V2k will be, and also note that V1k being less than some number provides
no information about what V1j , V2j will be. Therefore, the conditional independence holds
so that (87) changes to (88).

I can rewrite (88) as follows.

Pr[Bli
2j ≤ bw2i|B1j ≤ b̃1i]× Pr[Bli

2k ≤ bw2i|B1k ≤ b̃1i].

So, what bidder i has to solve is the following problem.

[δ(v1i, v2i)− bw2i] GBli
2j(b̃1i)

(bw2i|B1j ≤ b̃1i)GBli
2k(b̃1i)

(bw2i|B1k ≤ b̃1i), (89)

in which if I take a derivative with respect to bw2i, I get the following first order condition.

δ(v1i, v2i) = bw2i +
GBli

2j(b̃1i)
(bw2i|B1j ≤ b̃1i)GBli

2k(b̃1i)
(bw2i|B1k ≤ b̃1i)

∂
∂bw2i

GBli
2j(b̃1i)

(bw2i|B1j ≤ b̃1i)GBli
2k(b̃1i)

(bw2i|B1k ≤ b̃1i)
≡ ξw2i(b

w
2i; b̃1i) (90)

For future use, I define the following:

Hw
2i(b

w
2i; b̃1i) = GBli

2j(b̃1i)
(bw2i|B1j ≤ b̃1i)GBli

2k(b̃1i)
(bw2i|B1k ≤ b̃1i) (91)

I am aware that bw2i in (90) need not be the equilibrium bid, but I leave the notation as it is.

D.2.2 When i loses the first auction and the winner is j

[Back to ToC] Bidder i has to solve the following problem. As the title of this subsection says,
the first auction winner here is assumed to be bidder j — according to the disclosure policy, j’s
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winning bid b1j is publicly known.

[v2i − blj2i] Pr[B
w
2j ≤ blj2i, B

lj
2k ≤ blj2i | B1j = b1j , B1k ≤ B1j , b̃1i ≤ B1j , V1i = v1i, V2i = v2i],

in which the probability term is equivalent to the following.

Pr[sw2j(V1j , V2j) ≤ blj2i, s
l
2k(V2k, b1j , {j}) ≤ blj2i

| s1j(V1j) = b1j , s1k(V1k) ≤ b1j , b̃1i ≤ b1j , V1i = v1i, V2i = v2i]. (92)

Following the same logic(i.e., independence of the random variables), (92) is the same as the
following — in (92), what is known from i’s perspective is {V1i = v1i, V2i = v2i, V1j = s−1

1 (b1j)}

H l
2i(b

lj
2i; b1j , {j}) ≡ GBw

2j |B1j
(blj2i|b1j)×G

Blj
2k(b1j)

(blj2i|B1k ≤ b1j) (93)

for b̃1i ≤ b1j . Thus the first order condition for bidder i with respect to his second bid blj2i is as
follows.

v2i = blj2i +
GBw

2j |B1j
(blj2i|b1j)GBlj

2k(b1j)
(blj2i|B1k ≤ b1j)

∂

∂blj2i
GBw

2j |B1j
(blj2i|b1j)GBlj

2k(b1j)
(blj2i|B1k ≤ b1j)

≡ ξl2i(b
lj
2i; b1j , {j}) (94)

for b̃1i ≤ b1j .
I am aware that blj2i in (94) need not be the equilibrium bid, but I leave the notation as it is.

D.2.3 When i loses the first auction and the winner was k

[Back to ToC] Unlike the previous subsection, the first auction winner here is bidder k, not
bidder j. If I use the same logic, I get the following First order condition.

v2i = blk2i +
GBw

2k|B1k
(blk2i|b1k)GBlk

2j(b1k)
(blk2i|B1j ≤ b1k)

∂
∂blk2i

GBw
2k|B1k

(blk2i|b1k)GBlk
2j(b1k)

(blk2i|B1j ≤ b1k)
≡ ξl2i(b

lk
2i; b1k, {k}) (95)

for b̃1i ≤ b1k. For future use, I define the following:

H l
2i(b

lk
2i; b1k, {k}) ≡ GBw

2k|B1k
(blk2i|b1k)×GBlk

2j(b1k)
(blk2i|B1j ≤ b1k) (96)

I am aware that blk2i in (95) need not be the equilibrium bid, but I leave the notation as it is.

D.2.4 Continuation Values

[Back to ToC] In the next subsection, I will use three continuation values, Vw
i (v1i, b̃1i), V l

i(v1i, b̃1i, {j}),
and V l

i(v1i, b̃1i, {k}), so I need to define those — the last two continuation values denote the
case in which either bidder j or bidder k being the first auction winner.

First, if bidder i is the first auction winner, and given (90), then his (optimal) expected
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profit in the second auction is:

GBli
2j(b̃1i)

(bw2i|B1j ≤ b̃1i)
2GBli

2k(b̃1i)
(bw2i|B1k ≤ b̃1i)

2

∂
∂bw2i

GBli
2j(b̃1i)

(bw2i|B1j ≤ b̃1i)GBli
2k(b̃1i)

(bw2i|B1k ≤ b̃1i)

≡ Hw
2i(b

w
2i; b̃1i)

2

hw2i(b
w
2i; b̃1i)

,

in which bw2i is s̃w2i(v1i, v2i, b̃1i).
Right after the first auction and before the start of the second auction, what bidder i knows

is that he has v1i but is uncertain of his V2i. Therefore, his Vw
i (v1i, b̃1i) is as follows.

EV2|V1

[
Hw

2i(s̃
w
2i(v1i, V2, b̃1i); b̃1i)

2

hw2i(s̃
w
2i(v1i, V2, b̃1i); b̃1i)

∣∣∣∣∣v1i
]
. (97)

Note here that the expectation is taken with respect to Pr[V2 ≤ ·|V1 = v1i] not Pr[V2i ≤ ·|V1i =

v1i] because the given parameter is F2|1.
Second, if bidder i is the first auction loser and if the winner was j, then given (94), bidder

i’s (optimal) expected profit in the second auction is:

GBw
2j |B1j

(blj2i|b1j)2GBlj
2k(b1j)

(blj2i|B1k ≤ b1j)
2

∂

∂blj2i
GBw

2j |B1j
(blj2i|b1j)GBlj

2k(b1j)
(blj2i|B1k ≤ b1j)

≡
H l

2i(b
lj
2i; b1j , {j})2

hl2i(b
lj
2i; b1j , {j})

,

in which blj2i is s̃l2i(v2i, b1j ; {j}). Right after the first auction and before the start of the second
auction, what bidder i knows is that he has v1i but is uncertain of his V2i and what the winning
bid will be. Thus, before calculating V l

i(v1i, b̃1i, {j}), we need to know the following conditional
distribution.

Pr[V2i ≤ ·, B1j ≤ ·|V1i = v1i, B1j > b̃1i, B1j > B1k]

=
Pr[V2i ≤ ·, B1j ≤ ·, V1i = v1i, B1j > b̃1i, B1j > B1k]

Pr[V1i = v1i, B1j > b̃1i, B1j > B1k]

= F2|1(·|v1i)
Pr[B1j ≤ ·, B1j > b̃1i, B1j > B1k]

Pr[B1j > b̃1i, B1j > B1k]

= F2|1(·|v1i)
Pr[B1j ≤ ·, B1j > B1k|B1j > b̃1i]

Pr[B1j > B1k|B1j > b̃1i]

= F2|1(·|v1i)Pr[B1j ≤ ·, B1j > B1k|B1j > b̃1i]
1−GB1j (b̃1i)∫ b1

b̃1i
GB1k

(b1j)gB1j (b1j)db1j

= F2|1(·|v1i)
∫ ·
b̃1i

GB1k
(b1j)gB1j (b1j)db1j

1−GB1j (b̃1i)

1−GB1j (b̃1i)∫ b1
b̃1i

GB1k
(b1j)gB1j (b1j)db1j

= F2|1(·|v1i)
∫ ·
b̃1i

GB1k
(b1j)gB1j (b1j)db1j∫ b1

b̃1i
GB1k

(b1j)gB1j (b1j)db1j
,
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in which the second equality holds by the independence assumption, and that Pr[V2i ≤ ·|V1i = ·]
is the same as F2|1.

Given that we know the conditional distribution needed for V l
i , I calculate V l

i(v1i, b̃1i, {j})
as follows.

1∫ b1
b̃1i

GB1k
(b1j)gB1j (b1j)db1j

∫ b1

b̃1i

∫ v2

v2

H l
2i(s̃

l
2i(v2, b1; {j}); b1, {j})2

hl2i(s̃
l
2i(v2, b1; {j}); b1, {j})

dF2|1(v2|v1i)d
∫ b1

b̃1i

GB1k
(b1j)gB1j (b1j)db1j

=
1∫ b1

b̃1i
GB1k

(b1j)dGB1j (b1j)

∫ b1

b̃1i

∫ v2

v2

H l
2i(s̃

l
2i(v2, b1; {j}); b1, {j})2

hl2i(s̃
l
2i(v2, b1; {j}); b1, {j})

dF2|1(v2|v1i)GB1k
(b1)gB1j (b1)db1

(98)

Then using the same logic, V l
i(v1i, b̃1i, {k}) in which now bidder k is the first winner is as follows.

1∫ b1
b̃1i

GB1j (b1k)dGB1k
(b1k)

∫ b1

b̃1i

∫ v2

v2

H l
2i(s̃

l
2i(v2, b1; {k}); b1, {k})2

hl2i(s̃
l
2i(v2, b1; {k}); b1, {k})

dF2|1(v2|v1i)GB1j (b1)gB1k
(b1)db1

(99)

D.2.5 i in the first auction

[Back to ToC] Bidder i has to solve the following problem — he has to choose the optimal b̃1i.

[v1i − b̃1i + Vw
i (v1i, b̃1i)]Pr[B1j ≤ b̃1i, B1k ≤ b̃1i|V1i = v1i]

+ V l
i(v1i, b̃1i, {j})

[
Pr[B1j > b̃1i, B1k ≤ b̃1i|V1i = v1i] + Pr[B1j > b̃1i, B1k > b̃1i, B1j > B1k|V1i = v1i]

]
+ V l

i(v1i, b̃1i, {k})
[
Pr[B1j ≤ b̃1i, B1k > b̃1i|V1i = v1i] + Pr[B1j > b̃1i, B1k > b̃1i, B1j ≤ B1k|V1i = v1i]

]
,

(100)

in which five probability terms appear. The first probability equals the following.

Pr[s1j(V1j) ≤ b̃1i, s1k(V1k) ≤ b̃1i|V1i = v1i].

Given the structure of the random variable, I can express above as follows.

GB1j (b̃1i)GB1k
(b̃1i).

The third probability equals the following.

Pr[s1j(V1j) > b̃1i, s1k(V1k) > b̃1i, s1j(V1j) > s1k(V1k)|V1i = v1i].

I can rewrite this third probability as follows. Note that I omit the condition {V1i = v1i} because
the omission has no effect on the probability (Let Uj ≡ s1j(V1j) and Uk ≡ s1k(V1k)).

Pr[U1j > b̃1i, U1k > b̃1i, U1j > U1k]

=

∫ b1

b̃1i

∫ b1

y
Pr[U1j = x]Pr[U1k = y] dxdy
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=

∫ b1

b̃1i

Pr[U1j > y]Pr[U1k = y]dy

Thus, I can rewrite the third probability as follows.

∫ b1

b̃1i

(1−GB1j (b))gB1k
(b)db.

I can also rewrite the fifth probability, Pr[B1j > b̃1i, B1k > b̃1i, B1j ≤ B1k|V1i = v1i], as follows.∫ b1

b̃1i

(1−GB1k
(b))gB1j (b)db

Given the derivations, I rewrite (100) as follows.

[v1i − b̃1i + Vw
i (v1i, b̃1i)]GB1j (b̃1i)GB1k

(b̃1i)

+ V l
i(v1i, b̃1i, {j})

[∫ b1

b̃1i

GB1k
(b)dGB1j (b)

]

+ V l
i(v1i, b̃1i, {k})

[∫ b1

b̃1i

GB1j (b)dGB1k
(b)

]
, (101)

by noting the following equivalences:

(1−GB1j (b̃1i))GB1k
(b̃1i) +

∫ b1

b̃1i

(1−GB1j (b))gB1k
(b)db =

∫ b1

b̃1i

GB1k
(b)dGB1j (b)

(1−GB1k
(b̃1i))GB1j (b̃1i) +

∫ b1

b̃1i

(1−GB1k
(b))gB1j (b)db =

∫ b1

b̃1i

GB1j (b)dGB1k
(b)

(101) is what bidder i has to solve by choosing optimal b̃1i. The continuation values inside
(101) can be replaced with (97), (98), and (99). By this replacement, (101) becomes as follows.[

v1i − b̃1i +

∫ v2

v2

Hw
2i(b̃

w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

dF2|1(v2|v1i)

]
GB1j (b̃1i)GB1k

(b̃1i)

+

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lj
2i; b1, {j})2

hl2i(b̃
lj
2i; b1, {j})

dF2|1(v2|v1i)GB1k
(b1)gB1j (b1)db1

+

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lk
2i; b1, {k})2

hl2i(b̃
lk
2i; b1, {k})

dF2|1(v2|v1i)GB1j (b1)gB1k
(b1)db1, (102)

in which b̃w2i ≡ s̃w2i(v1i, v2, b̃1i), b̃
lj
2i ≡ s̃l2i(v2, b1; {j}), and b̃lk2i ≡ s̃l2i(v2, b1; {k}). Note that these

three tildes are the optimizer(or argmax) of a profit function, which enables me to think of
Envelope theorem.

If I take a derivative of (102) with respect to b̃1i and let it equal 0, I get the following
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equation. [
−1 +

∫ v2

v2

∂

∂b̃1i

(
Hw

2i(b̃
w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

)
dF2|1(v2|v1i)

]
GB1j (b̃1i)GB1k

(b̃1i)

+

[
v1i − b̃1i +

∫ v2

v2

Hw
2i(b̃

w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

dF2|1(v2|v1i)

]
∂GB1j (b̃1i)GB1k

(b̃1i)

∂b̃1i

+
∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lj
2i; b1, {j})2

hl2i(b̃
lj
2i; b1, {j})

dF2|1(v2|v1i)GB1k
(b1)gB1j (b1)db1

+
∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lk
2i; b1, {k})2

hl2i(b̃
lk
2i; b1, {k})

dF2|1(v2|v1i)GB1j (b1)gB1k
(b1)db1 = 0.

Rearranging the equation yields the following:[
v1i − b̃1i +

∫ v2

v2

Hw
2i(b̃

w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

dF2|1(v2|v1i)

]
∂GB1j (b̃1i)GB1k

(b̃1i)

∂b̃1i

=

[
1−

∫ v2

v2

∂

∂b̃1i

(
Hw

2i(b̃
w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

)
dF2|1(v2|v1i)

]
GB1j (b̃1i)GB1k

(b̃1i)

− ∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lj
2i; b1, {j})2

hl2i(b̃
lj
2i; b1, {j})

dF2|1(v2|v1i)GB1k
(b1)gB1j (b1)db1

− ∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lk
2i; b1, {k})2

hl2i(b̃
lk
2i; b1, {k})

dF2|1(v2|v1i)GB1j (b1)gB1k
(b1)db1

Rearranging the equation again yields the following:

v1i = b̃1i +
GB1j (b̃1i)GB1k

(b̃1i)

∂GB1j (b̃1i)GB1k
(b̃1i)/∂b̃1i

−
∫ v2

v2

Hw
2i(b̃

w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

dF2|1(v2|v1i)−
GB1j (b̃1i)GB1k

(b̃1i)

∂GB1j (b̃1i)GB1k
(b̃1i)/∂b̃1i

∫ v2

v2

∂

∂b̃1i

(
Hw

2i(b̃
w
2i; b̃1i)

2

hw2i(b̃
w
2i; b̃1i)

)
dF2|1(v2|v1i)

− 1

∂GB1j (b̃1i)GB1k
(b̃1i)/∂b̃1i

×[
∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lj
2i; b1, {j})2

hl2i(b̃
lj
2i; b1, {j})

dF2|1(v2|v1i)GB1k
(b1)gB1j (b1)db1+

∂

∂b̃1i

∫ b1

b̃1i

∫ v2

v2

H l
2i(b̃

lk
2i; b1, {k})2

hl2i(b̃
lk
2i; b1, {k})

dF2|1(v2|v1i)GB1j (b1)gB1k
(b1)db1

]
≡ ξ1(b̃1i), (103)

in which Hw
2i(·), H l

2i(·; {j}), and H l
2i(·; {k}) come from (91), (93), and (96).

D.2.6 Equilibrium Strategies

[Back to ToC] Up to now, I haven’t described in detail what the equilibrium strategies are. By
referring to the first page of D.2, I define monotone strategies as follows.

Information sets of any bidder at the beginning of the first and the second auctions are as
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follows.

F1 = {id, V1id, F1i, F1j , F1k, F2|1, δ, I}

F2 = {id, V1id, F1i, F1j , F1k, F2|1, δ, I, V2id, B1id, B
max
1 ,W1},

where id denotes a bidder himself, and I denotes a set {i, j, k}. If we were to extend it to more
than three bidders, then both F1 and F2 have to be updated accordingly.

A bidder’s strategy is a pair of strategies [s1, s2], one for each auction that depends on the
information available to him at the beginning of each auction. So for any bidders, {i, j, k}, the
first auction equilibrium bid, B1, is as follows.

B1 = s1(id, V1id, F1i, F1j , F1k, F2|1, δ, I)

=


s1(i, V1i) ≡ s1i(V1i) if id = i

s1(j, V1j) ≡ s1i(V1j) if id = j

s1(j, V1k) ≡ s1i(V1k) if id = k,

(104)

in which a strategy s1 is strictly monotone in V1id, and I omitted a set {F1i, F1j , F1k, F2|1, δ, I}
as the set is a common knowledge and invariant.

Before discussing equilibrium second auction bid, B2, note the following:

F2 includes B1id, and B1id comes from s1 defined above. Since s1 includes arguments {id,
V1id, F1i, F1j , F1k, F2|1, δ, I}, and given that these arguments are already inside F2, this
implies that I can omit B1id from F2.

Thus, equilibrium bid, B2, is as follows.

B2 = s2(id, V1id, F1i, F1j , F1k, F2|1, δ, I, V2id, B
max
1 ,W1)

=



s2(i, V1i, V2i, B
max
1 , i) ≡ sw2i(V1i, V2i) if id = i,W1 = i

s2(i, V1i, V2i, B
max
1 , j) ≡ sl2i(V2i, B

max
1 ; {j}) if id = i,W1 = j

s2(i, V1i, V2i, B
max
1 , k) ≡ sl2i(V2i, B

max
1 ; {k}) if id = i,W1 = k

s2(j, V1j , V2j , B
max
1 , j) ≡ sw2j(V1j , V2j) if id = j,W1 = j

s2(j, V1j , V2j , B
max
1 , i) ≡ sl2j(V2j , B

max
1 ; {i}) if id = j,W1 = i

s2(j, V1j , V2j , B
max
1 , k) ≡ sl2j(V2j , B

max
1 ; {k}) if id = j,W1 = k

s2(k, V1k, V2k, B
max
1 , k) ≡ sw2k(V1k, V2k) if id = k,W1 = k

s2(k, V1k, V2k, B
max
1 , i) ≡ sl2k(V2k, B

max
1 ; {i}) if id = k,W1 = i

s2(k, V1k, V2k, B
max
1 , j) ≡ sl2k(V2k, B

max
1 ; {j}) if id = k,W1 = j

(105)

The strategy s2 is monotone in V2id, and I omitted a set {F1i, F1j , F1k, F2|1, δ, I} as the set is a
common knowledge and invariant. I want to comment on the following points for (105):

• When id and W1 are the same, I omitted Bmax
1 inside sw2id(V1id, V2id). The reason is that in

this case, Bmax
1 = B1id holds, and I already described above the justification of removing

B1id from F2.

88



• When id and W1 are not the same, I omitted V1id from sl2id(V2id, B
max
1 ; {W1}). The

reason is that V1id provides no information because bidders are independent, and the
second objects’ value is solely decided by V2id.

Given [s1, s2] from (104) and (105), I describe how first order conditions change in equilibrium for
bidder i. In equilibrium, bidder i’s following bids, which were used in the previous subsections,

bw2i = s̃w2i(v1i, v2i, b̃1i) from (90)

blj2i = s̃l2i(v2i, b1j ; {j}) from (94)

blk2i = s̃l2i(v2i, b1k; {k}) from (95)

b̃1i = s̃1(v1i) from (103)

must equal to his competitors strategies [s1, s2]. Thus, in equilibrium, the following holds.

bw2i = s̃w2i(v1i, v2i, b̃1i) = sw2i(v1i, v2i)

blj2i = s̃l2i(v2i, b1j ; {j}) = sl2i(v2i, b1j ; {j})

blk2i = s̃l2i(v2i, b1k; {k}) = sl2i(v2i, b1k; {k})

b̃1i = s̃1(v1i) = s1(v1i)

Given this equilibrium restriction put on bidder i, then bidder i’s equilibrium bids [s1, s2]
satisfies the following equalities — they come from (90), (94), and (95).

δ(v1i, v2i) = bw2i +
GBli

2j(b1i)
(bw2i|B1j ≤ b1i)GBli

2k(b1i)
(bw2i|B1k ≤ b1i)

∂
∂bw2i

GBli
2j(b1i)

(bw2i|B1j ≤ b1i)GBli
2k(b1i)

(bw2i|B1k ≤ b1i)
≡ ξw2i(b

w
2i; b1i) (106)

v2i = blj2i +
GBw

2j |B1j
(blj2i|b1j)GBlj

2k(b1j)
(blj2i|B1k ≤ b1j)

∂

∂blj2i
GBw

2j |B1j
(blj2i|b1j)GBlj

2k(b1j)
(blj2i|B1k ≤ b1j)

≡ ξl2i(b
lj
2i; b1j , {j}) (107)

v2i = blk2i +
GBw

2k|B1k
(blk2i|b1k)GBlk

2j(b1k)
(blk2i|B1j ≤ b1k)

∂
∂blk2i

GBw
2k|B1k

(blk2i|b1k)GBlk
2j(b1k)

(blk2i|B1j ≤ b1k)
≡ ξl2i(b

lk
2i; b1k, {k}), (108)

in which b1j and b1k in (107) and (108) are higher than b1i. To guarantee the equilibrium, the
right-hand side of (106) must be increasing in bw2i for every b1i, the right-hand sides of (107) and
(108) must be increasing in blj2i and blk2i for every b1j and b1k. These monotonicities ensure that
[sw2i, sl2i(·; {j}), sl2i(·; {k})] inside (105) are indeed monotone strategies as desired.
(Note: (107) and (108) already imply testable restrictions. If blj2i and blk2i are the same numbers,
and if b1j and b1k are the same numbers, and if the resulting v2is are different, then indeed it
means that bidder i reacts differently according to the identity of the first auction winner.)

Because b1i = s1i(v1i) holds, and because s1 in (104) is a monotone strategy, I can do the
following things on (103) in the following order:

1. Replace b̃1i, b̃w2i, b̃
lj
2i, b̃lk2i inside (103) with b1i, bw2i, b

lj
2i, blk2i — recall that bw2i, b

lj
2i, blk2i are

the same as sw2i(v1i, v2), sl2i(v2, b1; {j}), sl2i(v2, b1; {k}) because bidder i plays equilibrium
strategies.
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2. Note the term dF2|1(v2|v1i) inside (103). I attach the screenshot below for exposition.

There are three types of dF2|1, namely 1⃝, 2⃝, and 3⃝.

3. I can replace 1⃝ with dGBw
2i|B1i

(bw2i|b1i) by noting the following facts.

• Integrating bw2i = sw2i(v1i, V2) over [v2, v2] with Pr[V2 ≤ ·|V1 = v1i] is the same as
integrating bw2i over [sw2i(v1i, v2), sw2i(v1i, v2)] with Pr[sw2i(V1, V2) ≤ ·|V1 = v1i].

• Given Pr[sw2i(V1, V2) ≤ ·|V1 = v1i], I can change it to Pr[sw2i(V1, V2) ≤ ·|s1i(V1) =

s1i(v1i)] which doesn’t change any result.

4. I can replace 2⃝ with G
Blj

2i(b1j)|B1i
(blj2i|b1i) by noting the following:

• Recall that b1 inside blj2i = sl2i(v2, b1; {j}) is j’s first auction bid, not i’s bid.

• Integrating blj2i = sl2i(v2, b1; {j}) over [v2, v2] with Pr[V2 ≤ ·|V1 = v1i] while leaving
b1 intact is the same as integrating blj2i over [sl2i(v2, b1; {j}), sl2i(v2, b1; {j})] with
Pr[sl2i(V2, b1; {j}) ≤ ·|V1 = v1i].

• Given Pr[sl2i(V2, b1; {j}) ≤ ·|V1 = v1i], I can change it to Pr[sl2i(V2, b1; {j}) ≤ ·|s1i(V1) =

s1i(v1i)], which doesn’t change any result.

5. Similarly, I can replace 3⃝ with GBlk
2i (b1k)|B1i

(blk2i|b1i).

After all these changes, i’s equilibrium bids must satisfy the following equality, which comes
from (103).

v1i = b1i +
GB1j (b1i)GB1k

(b1i)

∂GB1j (b1i)GB1k
(b1i)/∂b1i

−
∫ b2

b2

Hw
2i(b

w
2i; b1i)

2

hw2i(b
w
2i; b1i)

dGBw
2i|B1i

(bw2i|b1i)

−
GB1j (b1i)GB1k

(b1i)

∂GB1j (b1i)GB1k
(b1i)/∂b1i

∫ b2

b2

∂

∂b1i

(
Hw

2i(b
w
2i; b1i)

2

hw2i(b
w
2i; b1i)

)
dGBw

2i|B1i
(bw2i|b1i)

− 1

∂GB1j (b1i)GB1k
(b1i)/∂b1i

×[
∂

∂b1i

∫ b1

b1i

∫ b2

b2

H l
2i(b

lj
2i; b1, {j})2

hl2i(b
lj
2i; b1, {j})

dG
Blj

2i(b1j)|B1i
(blj2i|b1i)GB1k

(b1)gB1j (b1)db1+
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∂

∂b1i

∫ b1

b1i

∫ b2

b2

H l
2i(b

lk
2i; b1, {k})2

hl2i(b
lk
2i; b1, {k})

dGBlk
2i (b1k)|B1i

(blk2i|b1i)GB1j (b1)gB1k
(b1)db1

]
≡ ξ1(b1i),

(109)

in which Hw
2i, H l

2i(·; {i}), and H l
2i(·; {k}) inside (109) come from (91), (93), and (96). The

right-hand side of (109) must be increasing in b1i, and this restriction ensures s1i from (104) is
monotone.

In conclusion, unlike only three restrictions of monotonicity in the original model, we have
four restrictions of monotonicity for bidder i applied to (106), (107), (108), and (109). As there
are three bidders, the total number of restrictions becomes twelve, and one can easily see that
the number will exponentially increase as the number of bidders goes up.

One could categorize bidders into two groups, such as ‘regular or fringe’ as in Jofre-Bonet
and Pesendorfer (2003) or ‘loggers or mills’ as in Athey et al. (2011), and progress asymmetric
bidder model, which I leave for future research.

D.3 Product-Mix Auction

[Back to ToC] I illustrate the implementation of the Product-Mix Auction using a simple ex-
ample.

✓ (Item 1) The Bank of England (hereafter, BOE) continues to employ the Product-Mix
Auction (hereafter, PMA) in its open market operations: Link 1(2024) link 2(2023), and
link 3(2015)

✓ (Item 2) PMA is a variant of the ‘simultaneous multi-unit uniform price auction,’ and the
Handbook of Market Design (p. 315) notes that the ascending-clock auction is superior to
the one-shot sealed-bid auction.

The reason I am considering the PMA is that 1) it concludes faster than the ascending-
clock auction, which is critical in agricultural produce auctions; 2) since bidders bid truth-
fully in the PMA, estimated value from the bids can directly be used in counterfactual
analysis; and 3) as noted in the third paragraph on page 2 of Klemperer (2018), the PMA
identifies the competitive equilibrium.

✓ (Item 3) Assume the auctioneer is selling two varieties, apples and pears, which are substi-
tutes; as noted in footnote 36 of Klemperer (2018), if the two varieties were complements,
a competitive equilibrium might not exist.

A bidder can express his preference as follows — I will assume ‘3.0 kg + high-quality
produce’ for both apples and pears.

– If he only wants to purchase 25 boxes of apples at $10 per box and is not interested
in buying any boxes of pears, he would bid as follows:

(25, $10, $0)

≡ (Number of boxes, bid for apple per box, bid for pear per box)
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If the uniform price for the apple becomes $7, he pays $7 per box and wins 25 boxes;
if the uniform price for the apple is exactly $10, then he pays $10 per box but may
only receive a fraction of the 25 boxes; if the uniform price for the apple exceeds $10,
he wins nothing.

– If he only wants to buy 30 boxes of pears at $10 per box and is not interested in
buying any boxes of apples, then he bids as follows:

(30, $0, $10)

If the uniform price for the pear becomes $7, then he pays $7 per box and wins 30
boxes; if the uniform price for the pear is exactly $10, then he pays $10 per box but
may get a fraction of 30 boxes; if the uniform price for the pear exceeds $10, he wins
nothing.

– If he wants to buy 30 boxes of apples or pears, but wants to buy apples at $12 per
box while pears at $15 per box, then he bids as follows:

(30, $12, $15)

If the uniform prices for apple and pear become ($10, $10), then we have ($12, $15)−
($10, $10) = ($2, $5). This ‘($2,$5)’ means that he gets a surplus of $2 × 30 if he
gets apples while a surplus of $5× 30 if he gets pears instead. Since the PMA tries
to maximize a bidder’s surplus, it allocates 30 boxes of pears to him if the uniform
price is ($10, $10).
If the uniform prices for apple and pear are ($10,$15) instead, then the PMA gives
30 boxes of apple to him at a price of $10 per box. This is because giving apples to
him leads to a surplus of ‘$(12−10)×30’ while giving pears to him leads to a surplus
‘$(15− 15)× 30.’
If the uniform prices for apple and pear are exactly ($12,$15), then the auctioneer
rations — I will describe the detail in Item 7.
As noted in footnote 11 of Grace (2024), this or bid is rarely used in practice, which is
why I do not consider the or bid in coming up with Figures 16 and 17 in Application
section.

– A bidder can submit multiple bids too; there is no restriction on how many bids a
bidder can submit to the auctioneer.
For example:

(20, $5, $0), (30, $0, $10).

This means that a bidder has submitted two bids, each of which is ‘wants to buy 20
boxes of apple for $5 per box’ and ‘wants to buy 30 boxes of pears for $ 10 per box.’
In this case, if the uniform prices become ($6,$8), then this bidder will only get 30
boxes of pears paying $8 × 30; instead, if the uniform prices are ($2, $2), then this
bidder gets both 20 boxes of apple and 30 boxes of pear.
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– Of course, he can submit the following bids too.
For example:

(20, $5, $0), (30, $0, $10), (10, $6, $7).

This expresses that this bidder has added another bid, which is ‘wants to buy 10
boxes of apple at $6 per box or 10 boxes of pear at $7 per box.’

✓ (Item 4) Now, suppose a bidder i submitted three bids, A, B, and C, as follows:

– A: (1, $0, $7)

– B: (7, $5, $3)

– C: (5, $2, $0)

Then we can draw the following plot.

Figure 1

Each X- and Y-axis denotes ‘bid per box for apple’ and ‘bid per box for pear.’ If we look
at B, we observe that its coordinate is ($5, $3). ‘7’ written beside B expresses that it
wants 7 boxes of apple or pear.

✓ (Item 5) Figure 1 represents i’s bids. Suppose that there were other bidders {j, k,m}
and that they also submitted bids (ultimately, who bid and how much they bid does not
matter.). Then, Figure 1 transforms into the following Figure 2.
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Figure 2

Figure 2 has the following property.

– Total boxes that all the bidders want are 41 because 1+5+7+3+7+2+5+2+3+6 =
41. Red-colored numbers come from A, B, and C.

✓ (Item 6) Given the submitted bids represented in Figure 2, say the auctioneer wants to
sell a total of 23 boxes.

(for now, let’s forget about how many boxes of apple and pear the auctioneer has.)

Thus, the auctioneer has to choose some uniform price such that the uniform price rejects
‘18=41-23’ boxes; one example is as follows.

Figure 3

Some descriptions about Figure 3 follows.

– Uniform price here is ($2, $7), which is the cross section of blue lines; ($2, $7) means
that the bidder pays $2 per box for apple and $7 per box for pear.

– Bids inside the red-circle must be accepted.
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– Inside the red-circle, we observe the bids that lie on X-axis, namely (2,3,6). These
bids express that they only want to buy apples. So, these bids pay a uniform price
of $2 per box and get (2 boxes of apple, 3 boxes of apple, 6 boxes of apple).

– What about 5 and 7 inside the red-circle which do not lie on X-axis? These two bids
express that they want ‘either apple or pear’ as I wrote in Item 3. But, note that the
clearing price for the pear is ‘$7 per box’ and that these two bids are only willing to
pay $5 and $3. Thus, the auctioneer allocates apple to these two bids.

– Up to now, 23 boxes(5+7+2+3+6) have been sold to the bidders. Thus, the bids
that exactly lie on the blue lines, namely (1,3,5), are all rejected. Moreover, the bids
that lie inside the rectangles inside the blue lines, namely (7,2), are also rejected.

✓ (Item 7) Note that Item 6 shows only one example of a uniform price that rejects 18=41-23
boxes. Another possible uniform price is as follows (Item 9 will tell the exact allocation
mechanism).

Figure 4

The uniform price in this case is ($3,$5) not ($2,$7). In this case, all the bids inside the
red circles are accepted; it amounts to 19 boxes.

– A bid that lies to the west of the 45 degree line gets 1 box of pear and pays $5 per
box.

– Bids that lie below the 45 degree line gets 18 boxes of apple and pay $3 per box.

What about a bid that is located at the cross section of the blue lines (namely 5)? Since
19 boxes are already sold and the auctioneer wants to sell 4 boxes more, the auctioneer
can choose one of the following options:

(boxes of apple, boxes of pear) = {(4,0),(3,1),(2,2),(1,3),(0,4)}

which means the auctioneer rations the quantity.

✓ (Item 8) Now, I write down the possible uniform prices that reject 18 boxes, so that the
auctioneer sells 23=41-18 boxes.
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– ($3,$7) Refer to the figure below.

Figure 5

All the bids that are inside the red circle are accepted; they get 18 boxes of apples.
The bids that lie on the blue line, namely 1 and 5, are rationed to match 23 boxes.
It means that only 5=23-18 boxes should be chosen, so the possible options for the
auctioneer are as follows.
{(5 apple boxes, 0 pear box), (4 apple boxes, 1 pear box)}

– ($4,$3) Refer to the figure below.

Figure 6

The bids that are left to the 45 degree line and above the uniform price(i.e., 1,5) get
6 boxes of pear; the bids that are right to the 45 degree line and above the uniform
price(i.e., 7,3,6) get 16 boxes of apple.
Note that the 7 inside the red-circle expresses (7,$5,$3), which means that it wants
to buy either ‘7 boxes of apple at $5 per box’ or ‘7 boxes of pear at $3 per box’. Also,
recall that the uniform price here is ($4,$3). So, this bid is entitled to get either
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apple or pear, but the auctioneer allocates apple to this bid because this maximizes
a bidder’s surplus.
Now, one might have noticed some regular patterns innate in the PMA. I will describe
the regularity using the following figure.

✓ (Item 9) ($4,$5): Refer to the figure below:

Figure 7

Allocation proceeds as follows:

1. Auctioneer fixes how many boxes to sell (still, let’s forget about how many boxes of
apple and pear the auctioneer has). In our case, bidders want a total of 41 boxes,
and the auctioneer wants to sell 23 boxes.

2. Set a uniform price to reject 18 boxes. In the Figure 7, uniform price is set at ($4
for apple, $5 for pear). The uniform price is the cross section of the blue lines.

3. Given the cross section of the blue lines(i.e., ($4,$5)), one can imagine a rectangle
where vertices are as follows:

($0,$0), ($4,$0), ($4,$5), ($0,$5)

4. Any bids that are strictly outside of this rectangle are accepted: in our case, the
accepted bids are 1, 7, 3, and 6.

– Now, 45-degree line plays a role. If a bid lies below the line then the bid is given
apple; if a bid lies left to the line then the bid is given pear.

This ensures maximizing bidders’ surplus.

5. Any bids that lie on the blue lines of the rectangle are subject to rationing — in our
case, the bids that lie on the blue lines are 5 and 2.

– First, recall that we want to sell 23 boxes of apples and already 17=1+7+3+6
boxes have been committed.

– Thus, the remaining 6 boxes should be sold. Since the bids indicate 7=5+2
boxes, we must do rationing.
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– Note that 2 represents (2,$4,$0) and 5 represents (5,$3,$5). And since the uni-
form price is ($4,$3), 2 is only entitled to apple and 5 is only entitled to pear.
Thus, possible rationing options are as follows:

(1 apples, 5 pears) or (2 apples, 4 pears)

6. Lastly, any bids that lie on the black lines of the rectangle or lie strictly inside the
rectangle are rejected.

✓ (Item 10) In a nutshell, Items 6-8 show ‘there are multiple uniform prices that reject a
fixed number of boxes’ and Item 9 shows ‘how the allocation rule works and that rationing
happens.’

Refer to the following figure:

Figure 8

Figure 8 comes from repeating the allocation process described in Item 9; that is, the blue
lines here denote the set of uniform prices that reject 18 boxes. In Items 6-8, I mentioned
uniform prices such as ‘($2,$7), ($3,$7), ($3,$5), ($4,$5), ($4,$3),’ and these uniform prices
are all expressed as blue dots.

✓ (Item 11) I will name each blue dot in Figure 8 as follows:
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Figure 9

I will describe the properties of each U1-U8:

– Name of the dot: (Uniform Price), Price ratio, Related Figure, {Possible ratios of
apple to pear}.

– U1: ($2 per apple, $7 per pear), $2/$7, Figure 3, {23apple/0pear}.

– U2: ($3 per apple, $7 per pear), $3/$7, Figure 5, {23apple/0pear, 22apple/1pear}.

– U3: ($3 per apple, $5 per pear), $3/$5, Figure 4,
{22apple/1pear, 21apple/2pear, 20apple/3pear, 19apple/4pear, 18apple/5pear}.

– U4: ($4 per apple, $5 per pear), $4/$5, Figure 7, {18apple/5pear, 17apple/6pear}

– U5: ($4 per apple, $3 per pear), $4/$3, Figure 6, {17apple/6pear, 16apple/7pear}

– U6: ($5 per apple, $3 per pear), $5/$3, None,
{16apple/7pear, 15apple/8pear, 14apple/9pear,..., 9apple/14pear}

– U7: ($6 per apple, $3 per pear), $6/$3, None,
{9apple/14pear, 8apple/15pear, 7apple/16pear, 6apple/17pear}

– U8: ($7 per apple, $3 per pear), $7/$3, None,
{6apple/17pear, 5apple/18pear,..., 0apple/23pear}

Even though lengthy, some regularity can be found in U1-U8; as the price ratio increases
from $2/$7 to $7/$3, the ratio of apple to pear decreases from 23apple/0pear to 0ap-
ple/23pear.

Keeping this phenomenon in mind, refer to the figure below.
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Figure 10

X-axis is the ‘box ratio of apple to pear,’ and the Y-axis is the ‘price ratio of apple to
pear.’ If we look at the Y-axis, we notice U1-U8. For example, I wrote above that U4 has
$4/$5 and {18apple/5pear, 17apple/6pear}, and these are expressed as dots in Figure 10.

Connecting these dots leads to the stepped line, which is conceptually the same as the
stepped line in Figure 2 (page 10) of Klemperer (2018).

One can think of these dots as the demand curve. To be precise, these dots express the
‘relative demand of apple to pear.’ Thus, if the price ratio of apple to pear goes down, the
box ratio of apple to pear goes up.

Note that the auctioneer sees this demand curve before setting the uniform price. Of
course, if he changes his mind and wants to supply 30 boxes instead of 23 boxes, then the
whole dots will shift to the right. Lastly, the purple line is the auctioneer’s supply curve,
which corresponds to ‘Supply’ in Figure 2 (page 10) of Klemperer (2018).

The benefits of using the PMA are described on page 6 and in the first paragraph of page
7 of Klemperer (2018).

✓ (Item 12) Now, I want to return to the issue of ‘how many boxes of fruits the auctioneer
has.’ Up to now, I have ignored this issue.

As said, one will notice that Figure 2 (page 10) of Klemperer (2018) and Figure 10 are
comparable. To further describe the analogous features,

– 41 boxes in total corresponds to £5.5 billion.
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– 23 boxes to be sold correspond to £2.5 billion.

– Apple and pear correspond to Weak and Strong collateral.

– We try to sell ‘apple’ and ‘pear’, while Klemperer tries to buy ‘weak’ and ‘strong’
collateral.

– Y-axis of Figure 10 corresponds to Y-axis of Figure 2 of Klemperer. The only differ-
ence is that I use price ratio and Klemperer uses price difference.

– X-axis has the same story; I use the box ratio of apple to pear and Klemperer uses
the ratio allocated to weak relative to strong.

So, it is clear that in the case of Klemperer’s figure, no restrictions are put on the supply
curve since the BOE itself prints the sterling. But, in the case of Figure 10, it might be
the case that:

– The auctioneer wants to sell 23 boxes, and has 23 boxes in its warehouse. But, it may
be the case that 16 boxes are apple and 7 boxes are pear. Then, only the coordinate
(16/7, $4/$3) in Figure 10 is possible for the auctioneer; he can’t choose other dots
in the figure.

– But, say, the auctioneer wants to sell 13 boxes instead of 23 boxes. Given that the
auctioneer has 16 boxes of apple and 7 boxes of pear, then he can at least choose the
following ‘box ratio of apple to pear’:

13/0, 12/1, 11/2, 10/3, 9/4, 8/5, 7/6, 6/7.

In conclusion, unlike the BOE, the supply curve in the Korean Fruit Auction is constrained
by the available number of boxes of apples and pears. Therefore, at a minimum, the
auctioneer in the Korean Fruit Auction must have access to a large warehouse to store
and draw significant quantities of produce ―one of the objects the government aims to
achieve by 2031.

D.4 Robustness Check

[Back to ToC] As noted in D.5.1, I multiply ‘exp(Z ′β̂)’ by the homogenized bids and values to
recover the unhomogenized bids and values, meaning that it suffices verify whether the necessary
conditions hold for the homogenized bids and values.
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The left panels shows ξ̂w2 (black) and ξ̂l2 (red) when I = 3. Since the confidence intervals
are very narrow, I have omitted them for the sake of visual clarity, only leaving the median
estimates: The dotted estimates are conditioned on the ninety-fifth percentile of bo1, the solid
estimates on the fiftieth percentile of bo1, and the dashed estimates on the fifth percentile of bo1,
which is the Figure 10 presented in the body of the paper. One can observe that the functions
are strictly increasing.

The right panel is identical to the left panel, except that I have changed I from 3 to 5.
One can observe that as I changes from 3 to 5, only the red lines (i.e., the bidding strategy
of the first auction loser in the second auction) change, while the black lines (i.e., the bidding
strategy of the first auction winner in the second auction) remain unchanged. The reason for
this phenomenon are that (i) I assumed LI is the same for both I = 3 or I = 5, and (ii) the
output of (61) is invariant to I, as seen from its third equality, whereas the output of (63)
depends on I, as seen from its last equality.

Both the left and right panels are identical to Figures 12 and 13, except that I is 5 here.
Unlike in Figures 12 and 13, we observe a weak negative complementarity (i.e., substitutability)
under I = 5 (and, even positive complementarity at some values on the x-axis). The intuitive
explanation for this phenomenon is as follows.

- 0.332, which is the probability of the first auction winner winning the second auction (I
mentioned this statistic in Application section), is a fact. I denote this fact as A⃝.

- Another fact is Figure 14. Namely, the bid distribution of the second auction of the first
auction loser stochastically dominates that of the first auction winner. I denote this fact
as B⃝.

- Assume that B⃝ accounts for complementarity of degree −10. (if the number is negative,
then it is substitutability).

- If I set I = 5, then the fair probability is 0.20 (i.e., 1/5), and the true fact is 0.332.
Therefore, one could interpret this phenomenon as “the first auction winner feeling positive
complementarity of degree, say 8, so that he gets aggressive in the second auction.” So,
A⃝ accounts for complementarity of degree +8.
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- As a result, +8 − 10 = −2 comes out, which is a weak substitutability shown in the left
panel.

- If I set I = 3, then the fair probability is 0.33 (i.e., 1/3), and the true fact is still 0.332.
Therefore, one could interpret this phenomenon as “the first auction winner feels almost
no positive complementarity of degree, say 1, so that he is somewhat so-so in the second
auction.” So, A⃝ accounts for complementarity of degree +1.

- As a result, −8+1 = −7 comes out, which is a strong substitutability found in Figure 12.

Lastly, I explain why I assert that a valid distribution is formed from the right-hand side
of equation (10). Note that C.11.2 demonstrates the equivalence between equation (10) and
F2|1 = F̃2|B1

. I graphically presented F̃2|B1
in Figure 13, represented by the red line. Since

Figure 13 assumes a value slightly below the fifth percentile of bo1, what remains to validate
my assertions is to display the red lines for both the fifth and ninety-fifth percentiles of bo1.
With numerous tests still ongoing, I anticipate that certain bandwidths of the kernel density
estimators for each value of bo1 will allow me to derive a valid formation of F̃2|B1

.

D.5 Details regarding Estimation

D.5.1 Bid Homogenization

[Back to ToC] Notable papers that discuss bid homogenization include Haile et al. (2003) and
Perrigne and Vuong (2023). Homogenization assumes that a bidder’s value for the object is a
combination of (i) a value derived from the object’s observable characteristics, and (ii) a value
specific to the bidder, independent of the object’s observable characteristics.

Variants of homogenization exist. Haile et al. (2003) assumes an additively separable struc-
ture, while more recent papers such as Asker (2010), Sant’Anna (2018), and Compiani et al.
(2020) assume a multiplicatively separable structure. Specifically, they assume that a bidder’s
utility takes the following form:

uik = expxkγ ×vikϵk,

where uik is the valuation of a bidder i in k-th auction; xk is a vector of covariates of the object
at k-th auction; vik is the private value of a bidder i that is independent of xk; and ϵk represents
the unobserved heterogeneity. In Sant’Anna (2018), ϵk is set to 1, implying that unobserved
heterogeneity is not accounted for, a simplification that I also adopt. As footnote 31 of Asker
(2010) notes, this valuation structure offers more flexibility than that of Haile et al. (2003),
as it is multiplicatively separable: both the mean and variance of the value distribution are
influenced by the observed auction covariates.

I followed exactly the approach described in Sant’Anna (2018). In my context, it progresses
as follows. The superscript o refers to homogenized bid or homogenized value.

Step 1: My dataset contains 87,349 apple auctions, and I am using 1,906 auctions,
resulting in L = 953 auction pairs. I denote the auction covariates, which have an m× 1

dimension, as the vector Z. This vector includes not only fruit characteristics but also
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the precise time at which each auction concluded, which I normalize between 0 and 1 and
refer to it as the ‘order variable’ — 0 represents the first apple auction and 1 denotes the
last apple auction at a specific auction house on a given day.

Step 2: I apply the log transformation to the winning bids from all 87,349 auctions. I
then regress log bmax on Z, meaning I use all 87,349 auctions in this regression. The reason
for using the entire dataset, rather than just the 1,906 auctions, is that the coefficient for
the ‘order variable’ is negative with p < 0.05 in the full regression. This is an important
point because if I were to use only the last two auctions, namely limiting the dataset to
1,906 auctions, I would not fully capture the effect of the ‘order variable.’ The result of
this regression is shown in D.5.3

Step 3: Thus, we have 87,349 tuples of ( log(bmax), Z ′β̂, log(bmax,o) ), where log(bmax,o)

represents the residual from the regression. This regression is based on the equation that
appears on page 18 of Sant’Anna (2018), namely:

log bit = x′tα+ log boit (110)

This equation is based on Proposition 2 of Sant’Anna (2018).

Step 4: Next, I select the last two auctions of each day for each auction house, resulting
in (log(bmax,o

1ℓ ), log(bmax,o
2ℓ ),W1ℓ,W2ℓ) where ℓ ∈ {1, . . . , 953}. Following Sant’Anna (2018)

and Asker (2010), I then de-log these values, yielding (bmax,o
1ℓ , bmax,o

2ℓ ,W1ℓ,W2ℓ) where
ℓ ∈ {1, . . . , 953}.

Step 5: I use these homogenized bids for the estimation. It implies that the kernel density
estimator that I use is at most bi-variate.

Step 6: Suppose I want to plot the unhomogenized ξ̂w2 . In this case, I use ξ̂w,o
2 (bo2; b

o
1).

Let the lowest and highest values of bo2 range from 10 to 40, and I fix bo1 at 3. By varying
bo2 between 10 and 40, I obtain ˆ̃

δo(bo1, ·), and suppose the median of its estimates ranges
between 30 and 50.

Thinking of figures 10 and 11, the y-axis in this case will be bo2 ∈ [10, 40] and the x-axis will
have a range ˆ̃

δo(bo1, ·) ∈ [30, 50]. Then I can convert bo2 to unhomogenized b2 by following
(110), namely:

b2 = expZ′
2β̂ ×bo2

Also, I can convert ˆ̃
δo(bo1, ·) to ˆ̃

δ(bo1, ·) by doing: (this approach is valid by Sant’Anna
(2018))

ˆ̃
δ(bo1, ·) = expZ′

2β̂ ×ˆ̃
δo(bo1, ·) (111)

And, I can convert bo1 to b1 by doing:

b1 = expZ′
1β̂ ×bo1.
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Step 7: Given that I have gotten ˆ̃Do
2|1 and ˆ̃F o

2|1, I can convert the x-axis of ˆ̃Do
2|1 by doing

(111). Also I can convert the x-axis of ˆ̃F o
2|1 by doing:

v̂2 = expZ′
2β̂ ×v̂o2

And, if I were to do v̂o1 = ξ̂o1(b
o
1), I can recover its dollar value by doing:

v̂1 = expZ′
1β̂ ×v̂o1

b1 = expZ′
1β̂ ×bo1

Another approach to homogenization is to use percentages, as in Kong (2021), although
this method is not suitable for the setting of sequential first-price auctions. More recently,
Gimenes and Guerre (2020) introduced a quantile regression approach as an alternative to bid
homogenization.

D.5.2 Densities of Homogenized Bids

[Back to ToC] Figures A and B below are comparable to Figures 8 and 9, with the only difference
being that the bids here are homogenized.

Fig. A – Marginal homogenized winning bid
densities for the first auction (blue) and the
second auction (orange):
X-axis - Homogenized winning bid of the

first (blue) and second (orange) auction
Y-axis - Density

Fig. B – Contour plot of joint homogenized
winning bids from the first and second auc-
tions:
X-axis - Homogenized winning bid of the first

auction
Y-axis - Homogenized winning bid of the sec-

ond auction

For reference, recall that the mean, standard deviation, and 5th/50th/95th percentiles for
each bo1 and bo2 are as follows:

• Homogenized winning bid of the first auction (bo1) : 1.02, 0.40, 0.42/1.00/1.73,

• Homogenized winning bid of the second auction (bo2): 1.00, 0.42, 0.36/0.97/1.72.
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The correlation between bo1 and bo2 is 0.730, slightly lower than that of the unhomogenized
bids (0.768, as shown in Item B of Table 3). Additionally, after homogenization, both marginal
densities (Figure A) appear less skewed compared to those in Figure 8.

D.5.3 Regression Result

[Back to ToC]

Log-transformed winning bid per box (Korean Won, ₩)

Constant 8.552261
(0.146632)

Number of Boxes 0.003733
(0.000086)

Number of Apple Auctions Held
on a Given Day at an Auction House

-0.000112
(0.000016)

Order Variable -0.152303
(0.004810)

List of Fixed Effects
Month, Day, Auction House

Type of Apple, Grade,
Size, Place of origin, Group

Observations 87,349
Degree of Freedom Residuals 87,180

R2, Adjusted R2 0.472, 0.471

Note that the purpose of this regression is to absorb as much heterogeneity across auction
items as possible, so that the resulting homogenized bid and value are free from the influence
of these covariates; the coefficients themselves are not the primary focus in this analysis.

Considering the constant term of 8.552261, applying the transformation exp(8.552261)/1300
= 3.98 yields a value in U.S. dollars, assuming an exchange rate of $1 = ₩1300.

The numbers in parentheses are heteroskedasticity-robust standard errors. The variable
not included in this regression is the weight of a single apple box, which is almost always 10.0
kilograms.

“Number of Boxes” corresponds to the quantity of apple boxes offered. “Number of Apple
Auctions Held on a Given Day at an Auction House” refers to the number of apple auctions
that occurred at a specific auction house (e.g., 45 apple auctions occurred at the Seoul Auction
House). “Order Variable” is normalized between 0 and 1, where 0 represents the first apple
auction and 1 denotes the last apple auction at a specific auction house on a given day. We
observe that the coefficient for the “Order Variable” is negative.

Regarding the Fixed Effects, “Day” refers to what day it is (e.g., Monday), “Auction House”
indicates one of the five auction houses (e.g., Joongang Auction House), “Type of Apple” refers
to varieties (e.g., Fuji, Gala), “Size” pertains to the size of each individual apple inside the box
(e.g., Very Large, Large), and “Group” denotes whether the farmer who requested this object
is an individual or part of a partnership.
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“Grade” denotes the quality of apples inside the box, but this variable is considered unreli-
able, as it is assigned by the producer (or farmer) and is typically labeled as ‘best.’ Consequently,
bidders do not take the farmer-assigned grade seriously, which is why they inspect the fruits or
vegetables before each auction.

107


	Introduction
	Model
	Equilibrium Strategies
	Expected Profit Functions in the Second Auction
	Expected Profit Function in the First Auction 
	Equilibrium Strategies


	Identification
	Estimation and Monte Carlo
	Monte Carlo

	Application
	Necessary Context for the Korean Fruit Auction
	Apple Auctions
	Estimation Results for Apple Auctions
	Product-Mix Auction

	Conclusion
	Section 2, Model
	Equivalence between [B2,-i| B1,-i1i,V1i=v1i,V2i=v2i] and GB2l(1i)(|B11i)I-1 
	Equivalence between [B2,-i|B1j=b1w,B1jB1k,k-.25ex-.25ex-.25ex-.25ex{i,j}, B1j1i, V1i=v1i,V2i=v2i] and G2|1w(|b1w)GB2l(b1w)(|B1b1w)I-2
	Equivalence between [B1,-i1i] and [B11i]I-1
	Closed form expression for the continuation value of being the first auction winner in the second auction, i.e., Vw(v1i,1i)
	Closed form expression for the continuation value of being the first auction loser in the second auction, i.e., Vl(v1i,1i)
	Detailed derivation of going from equation (7) to equation (8)
	Detailed derivation of equation (10)
	Proof of Theorem 1
	IPV and other Models
	Ortega-Reichart:1968

	Section 3, Identification
	Derivation of equations (11)-(12) from the dataset, and Lemmas 1 and 2
	Derivation of equation (13) from the dataset
	Derivation of equation (14)
	Derivation of equation (15)
	Alternative Identification Strategy for the function 

	Section 4, Estimation and Monte Carlo
	Bandwidth and the derivations of (17)-(19)
	Derivations of (16), 1(|z,I), and 1(|z,I)
	Derivations of 2|1w(|b1,z,I) and B2l(b1)(|B1b1,z,I)
	Derivation of B2l(b1)(|B1b1,z,I) /b1
	Derivations of 2|1w(| b1, z, I) and B2l(b1)(| B1b1, z, I)
	Derivations of 2w(,b1;z,I) and 2l(,b1;z,I)
	Derivation of "0362[(v1,V2)|V1=v1,z,I]
	Derivation of "0362[V2|V1=v1,z,I]
	Estimation of a function 
	Derivations of 1(;z,I) and 1(|z,I)
	Monte Carlo Setting

	Section 5, Application
	About Korean Fruit Auction
	Model of Asymmetric Bidders
	Product-Mix Auction
	Robustness Check
	Details regarding Estimation


