Side Project: Overview

Jong Jae Choi

March 4, 2024

This side project is currently on hold, and I anticipate it will remain so for an extended period, as I cannot think of its real-world application.

- (Item1) Consider an election with four candidates, denoted as $\{1, 2, 3, 4\}$, and five voters, denoted as $\{i, j, k, m, l\}$. The voting mechanism employed is a majority rule, represented as g_{maj} .
- (Item2) Assume that only *four* types of preferences exist as outlined below.

 $- (1 \succ 2 \succ 3 \succ 4): 13\%$ - (2 \sim 1 \sim 3 \sim 4): 17% - (3 \sim 2 \sim 1 \sim 4): 40% - (4 \sim 2 \sim 3 \sim 1): 30%

The number associated with each preference represents its probability mass.

• (Item3) Given Item 2, let the set of preference profiles be denoted by S. Since there are five residents, the elements of S are as follows:

$$\begin{split} s_1 &= \{(1\succ 2\succ 3\succ 4), (1\succ 2\succ 3\succ 4)\}\\ s_2 &= \{(1\succ 2\succ 3\succ 4), (1\succ 2\succ 3\succ 4), (1\succ 2\succ 3\succ 4), (1\succ 2\succ 3\succ 4), (4\succ 2\succ 3\succ 1)\}\\ \dots\\ s_{1024} &= \{(4\succ 2\succ 3\succ 1), (4\succ 2\succ 3\succ 1), (4\succ 2\succ 3\succ 1), (4\succ 2\succ 3\succ 1), (4\succ 2\succ 3\succ 1)\} \end{split}$$

The number 1024 comes from the expression 4 * 4 * 4 * 4 * 4.

- (Item4) For example, say s_{377} is as follows.
 - -i has $(3 \succ 2 \succ 1 \succ 4)$
 - -j has $(3 \succ 2 \succ 1 \succ 4)$
 - -k has $(2 \succ 1 \succ 3 \succ 4)$
 - -m has $(1 \succ 2 \succ 3 \succ 4)$
 - -l has $(4 \succ 2 \succ 3 \succ 1)$

Recall that g_{maj} is a majority voting rule, described as follows:

- Each resident casts a vote by writing the name of one candidate on a piece of paper. The candidate who receives the most votes wins the election. In the event of a tie, the candidate with the higher number is declared the winner (for example, if both candidates 1 and 3 receive two votes, candidate 3 wins because 3 is numerically greater than 1).
- (Item5) I will assume a complete information setting in this case; thus, the residents know they are in s_{377} , while the mechanism designer is unaware of the state.

Given g_{maj} , one of the Nash Equilibrium Strategy profiles is (3, 3, 2, 2, 2), meaning that residents i, j, k, m, and l votes for candidates 3, 3, 2, 2, and 2 — I will explain why.

- From *i*'s perspective, the strategy profile he faces is (3,2,2,2). Whether *i* votes for candidates 1, 2, 3, or 4 does not affect the outcome of the election.
- *j*'s situation is identical to *i*'s.

- From k's perspective, the strategy profile he faces is (3,3,2,2). If k votes for candidate 2, then candidate 2 wins the election, which is the best outcome for him.
- From m's perspective, the strategy profile he faces is (3, 3, 2, 2). If m votes for candidates 1, 3, or 4, the outcome will be candidate 3 winning. In contrast, if he votes for candidate 2, the outcome will be a victory for candidate 2. Since m prefers candidate 2 over candidate 3, he votes for candidate 2.
- From *l*'s perspective, the profile he faces is (3,3,2,2). If *l* votes for 4, 3 or 1, the outcome will be candidate 3. In contrast, if he votes for candidate 2, the outcome will be a victory for candidate 2. Since *l* prefers candidate 2 over candidate 3, he votes for candidate 2.

Let $\sigma^*(\cdot; g_{maj})$ denote the Nash equilibrium strategy profile under the mechanism g_{maj} . I conclude that $g_{maj} \circ \sigma^*(s_{377}; g_{maj}) = 2$. For now, I avoid addressing the issue of multiple equilibria and use $\sigma^*(\cdot)$ instead of $\sigma^*(\cdot; g_{maj})$ for simplicity of notation.

• (Item6) Assume that the mechanism designer wants to choose a candidate who is the most popular among the residents' top choices (in s_{377} , this is candidate 3). I denote this preference as $f(\cdot)$, so I can write $f(s_{377}) = 3$.

We observe that $f(s_{377}) \neq g_{maj} \circ \sigma^*(s_{377})$, meaning that g_{maj} , which was designed by the mechanism designer, fails to implement his desired $f(\cdot)$, at least in state s_{377} . This failure occurs because $f(\cdot)$ is a nonmonotonic social choice function. However, in other states, such as s_{122} or s_{35} , we may have $f(s_{122}) = g_{maj} \circ \sigma^*(s_{122})$ and $f(s_{35}) = g_{maj} \circ \sigma^*(s_{35})$.

• (Item7) Now, recall the probability mass function from Item 2. Under this function, the probability of s_{177} may be higher than that of, say, s_{199} . In other words, the mass function in Item 2 assigns a probability to each element $s_1, s_2, \ldots, s_{1024}$ in S. I will use the notation $Pr(\cdot)$ to represent the probability mass function for S.

As is typically assumed in the textbook case, the mechanism designer knows $Pr(\cdot)$. Given this, under $Pr(\cdot)$, the designer can proceed as follows:

- Draw X_1 from $Pr(\cdot)$. X_1 could be s_1 , s_{177} , s_{199} , or any other element of S, but we treat it as a random variable. For each draw, obtain the values $f(x_1)$ and $g_{maj} \circ \sigma^*(x_1)$, and keep those in mind.
- Draw X_2 from $Pr(\cdot)$, and perform the same procedure: obtain both $f(x_2)$ and $g_{maj} \circ \sigma^*(x_2)$, and keep those in mind.

If the designer repeats this process 1,000 times, he will obtain the pairs $(f(x_1), g_{maj} \circ \sigma^*(x_1)),...$ $(f(x_{1,000}), g_{maj} \circ \sigma^*(x_{1,000})).$

- (Item 8) For this mechanism, g_{maj} , it may be the case that only 78% of the time the mechanism correctly implements the social choice function. However, if we switch to alternative mechanism—such as using a roulette to select a candidate, or conducting an auction—the success rate might increase (but can never be 100% because f is nonmonotonic). If one of the alternatives does improve the success rate, we can compare the existing g_{maj} with the new alternative using a test statistic to determine whether the difference is statistically significant. Some variant of the central limit theorem would be required for this comparison.
- (Item 9) Alternatively, we could fix the mechanism g_{maj} and vary the social choice functions, such as $f(\cdot)$, $\tilde{f}(\cdot)$, and $\tilde{\tilde{f}}(\cdot)$, to see whether g_{maj} performs well across different social choice functions. This statistical approach might help address questions that are difficult to solve purely through theoretical approach.