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This side project is currently on hold, and I anticipate it will remain so for an
extended period, as I cannot think of its real-world application.

• (Item1) Consider an election with four candidates, denoted as {1, 2, 3, 4}, and five voters, denoted
as {i, j, k,m, l}. The voting mechanism employed is a majority rule, represented as gmaj .

• (Item2) Assume that only four types of preferences exist as outlined below.

– (1 ≻ 2 ≻ 3 ≻ 4): 13%

– (2 ≻ 1 ≻ 3 ≻ 4): 17%

– (3 ≻ 2 ≻ 1 ≻ 4): 40%

– (4 ≻ 2 ≻ 3 ≻ 1): 30%

The number associated with each preference represents its probability mass.

• (Item3) Given Item 2, let the set of preference profiles be denoted by S. Since there are five
residents, the elements of S are as follows:

s1 = {(1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4)}
s2 = {(1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (1 ≻ 2 ≻ 3 ≻ 4), (4 ≻ 2 ≻ 3 ≻ 1)}
....

s1024 = {(4 ≻ 2 ≻ 3 ≻ 1), (4 ≻ 2 ≻ 3 ≻ 1), (4 ≻ 2 ≻ 3 ≻ 1), (4 ≻ 2 ≻ 3 ≻ 1), (4 ≻ 2 ≻ 3 ≻ 1)}

The number 1024 comes from the expression 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4.

• (Item4) For example, say s377 is as follows.

– i has (3 ≻ 2 ≻ 1 ≻ 4)

– j has (3 ≻ 2 ≻ 1 ≻ 4)

– k has (2 ≻ 1 ≻ 3 ≻ 4)

– m has (1 ≻ 2 ≻ 3 ≻ 4)

– l has (4 ≻ 2 ≻ 3 ≻ 1)

Recall that gmaj is a majority voting rule, described as follows:

– Each resident casts a vote by writing the name of one candidate on a piece of paper. The
candidate who receives the most votes wins the election. In the event of a tie, the candidate
with the higher number is declared the winner (for example, if both candidates 1 and 3 receive
two votes, candidate 3 wins because 3 is numerically greater than 1).

• (Item5) I will assume a complete information setting in this case; thus, the residents know they
are in s377, while the mechanism designer is unaware of the state.

Given gmaj , one of the Nash Equilibrium Strategy profiles is (3, 3, 2, 2, 2), meaning that residents
i, j, k, m, and l votes for candidates 3, 3, 2, 2, and 2 — I will explain why.

– From i’s perspective, the strategy profile he faces is (3,2,2,2). Whether i votes for candidates
1, 2, 3, or 4 does not affect the outcome of the election.

– j’s situation is identical to i’s.
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– From k’s perspective, the strategy profile he faces is (3,3,2,2). If k votes for candidate 2, then
candidate 2 wins the election, which is the best outcome for him.

– From m’s perspective, the strategy profile he faces is (3, 3, 2, 2). If m votes for candidates 1,
3, or 4, the outcome will be candidate 3 winning. In contrast, if he votes for candidate 2, the
outcome will be a victory for candidate 2. Since m prefers candidate 2 over candidate 3, he
votes for candidate 2.

– From l’s perspective, the profile he faces is (3,3,2,2). If l votes for 4, 3 or 1, the outcome will
be candidate 3. In contrast, if he votes for candidate 2, the outcome will be a victory for
candidate 2. Since l prefers candidate 2 over candidate 3, he votes for candidate 2.

Let σ∗(·; gmaj) denote the Nash equilibrium strategy profile under the mechanism gmaj . I conclude
that gmaj ◦ σ∗(s377; gmaj) = 2. For now, I avoid addressing the issue of multiple equilibria and use
σ∗(·) instead of σ∗(·; gmaj) for simplicity of notation.

• (Item6) Assume that the mechanism designer wants to choose a candidate who is the most popular
among the residents’ top choices (in s377, this is candidate 3). I denote this preference as f(·), so
I can write f(s377) = 3.

We observe that f(s377) ̸= gmaj ◦ σ∗(s377), meaning that gmaj , which was designed by the mecha-
nism designer, fails to implement his desired f(·), at least in state s377. This failure occurs because
f(·) is a nonmonotonic social choice function. However, in other states, such as s122 or s35, we may
have f(s122) = gmaj ◦ σ∗(s122) and f(s35) = gmaj ◦ σ∗(s35).

• (Item7) Now, recall the probability mass function from Item 2. Under this function, the probability
of s177 may be higher than that of, say, s199. In other words, the mass function in Item 2 assigns
a probability to each element s1, s2, . . . , s1024 in S. I will use the notation Pr(·) to represent the
probability mass function for S.
As is typically assumed in the textbook case, the mechanism designer knows Pr(·). Given this,
under Pr(·), the designer can proceed as follows:

– Draw X1 from Pr(·). X1 could be s1, s177, s199, or any other element of S, but we treat it as
a random variable. For each draw, obtain the values f(x1) and gmaj ◦ σ∗(x1), and keep those
in mind.

– Draw X2 from Pr(·), and perform the same procedure: obtain both f(x2) and gmaj ◦ σ∗(x2),
and keep those in mind.

If the designer repeats this process 1,000 times, he will obtain the pairs (f(x1), gmaj ◦ σ∗(x1)),...
(f(x1,000), gmaj ◦ σ∗(x1,000)).

• (Item 8) For this mechanism, gmaj , it may be the case that only 78% of the time the mechanism cor-
rectly implements the social choice function. However, if we switch to alternative mechanism—such
as using a roulette to select a candidate, or conducting an auction—the success rate might increase
(but can never be 100% because f is nonmonotonic). If one of the alternatives does improve the
success rate, we can compare the existing gmaj with the new alternative using a test statistic to de-
termine whether the difference is statistically significant. Some variant of the central limit theorem
would be required for this comparison.

• (Item 9) Alternatively, we could fix the mechanism gmaj and vary the social choice functions, such

as f(·), f̃(·), and ˜̃
f(·), to see whether gmaj performs well across different social choice functions.

This statistical approach might help address questions that are difficult to solve purely through
theoretical approach.
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