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Abstract

I consider a two-period first-price auction where the auctioneer sells a single unit each

period, and discloses only the winner’s identity between the periods. If a bidder wins both

auctions, either (a) the first unit makes the second unit more valuable(synergy) or (b) the

first unit has no causal effect(no synergy) but is a byproduct of a bidder highly valuing both

units(affiliation); the presence of synergy entails different auction design, such as whether to

bundle both units or not. Under the independent private value paradigm, I develop a model

that treats synergy and affiliation separately. For the separation, I use a nonparametric

identification strategy; the strategy is also applied to making the kernel density estimator

whose simulation result shows its accuracy.
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1 Introduction

Consider two agents, where one agent experiences an event more frequently than the other. In

the context of an auction, this repeated experience is analogous to the winner of the current

auction being more likely to win subsequent auctions.

One possible explanation for the repeated winning is that owning the current object enhances

the preference for the following object, indicating a synergy between the two. Knowing the

degree of synergy helps the auctioneer’s decision: the FCC’s spectrum auction separates licenses

into groups where those with high synergy are located in the same group, while across groups,

licenses have minimal synergy.1 Another explanation for the repeated wins is that bidders have

different preferences for the objects, and these differences persist in subsequent auctions; in

this case, the same bidder wins many auctions even without the presence of synergy. Without

confirming the degree of synergy, the auctioneer may erroneously believe in the first explanation

when the truth is the second explanation, known as the spurious state dependence (Heckman

(1981)).

Repeated winning occurs when a bidder wants more than one object, a situation known

as multi-unit demand. Papers assuming a multi-unit demand have mostly focused on auctions

other than the first-price sealed-bid: these include second-price sealed-bid auctions (Katzman

(1999), Liu (2021)), English auctions (Branco (1996), Donna and Esṕın-Sánchez (2018)), and a

combination of English and first-price sealed-bid auctions (Kong (2021)).

Jofre-Bonet and Pesendorfer (2003) is among the studies that focuses on repeated first-price

sealed-bid auctions. In their paper, a bidder2 wants multiple projects, but previously won

projects causes him to bid less aggressively. The causal effect of owning one object on the

value of another is also modeled in Arsenault-Morin et al. (2022), Gentry et al. (2023), and

Altmann (2024). Each of the three models assumes that this causal effect, or synergy between

the objects, is solely determined by the characteristics of the objects. This sole determination

does not allow the synergy between the objects to vary based on how much a bidder values

them; in my model, I use a function δ to allow this variation.

I examine two-period first-price sealed-bid auctions in which single object is auctioned off

each period. Between the two periods, the auctioneer discloses only the first auction winner’s

identity to the bidders, without revealing the winning bid. This limited disclosure and its effect

on a bidder’s bidding strategy have been discussed in Bergemann and Hörner (2018). Their

paper and my model both assume a bidder’s multi-unit demand, but I use Perfect Bayesian

Nash Equilibrium instead of Markov Perfect Equilibrium.

In my model, a bidder’s value for the first object influences both the value and the likelihood

of his valuation for the second object through F2|1. When the values for both objects highly

correlated for him, his value for the second object closely mirrors his value for the first object.

This high correlation, captured by F2|1, is distinct from how his value for the second object

changes due to his owning the first object, represented by the function δ (Section 2). This dis-

tinction helps the auctioneer accurately assess the auction at hand. Since equilibrium strategies

are derived by restricting the possible set of bid distributions, not every distribution can be

1See Subsections C and D in Federal Communications Commission (1994).
2One of the Regular bidders in their case, not Fringe bidders.
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rationalized by my model. Section 3 demonstrates that both δ and F2|1 can be identified with

limited observations: the winner’s identity and the winning bid are sufficient. The case where

all bids and bidders are observed is a special case. Section 4 details the multi-step estimator,

and Section 5 confirms the estimator’s reliable performance through Monte Carlo simulations.

2 Model

I present the framework in 2.1 and introduce the Bayesian Nash equilibrium strategies in 2.2.

2.1 Framework

The setting is the same as in Kong (2021) except that I consider a sequence of two first-price

sealed-bid auctions — letters in uppercase and lowercase stand for random variable and realized

value.

w, l: First auction winner(w), first auction loser(l).

V1, F1(z): Value of the first object(V1) and its distribution(F1(z) ≡ Pr[V1 ≤ z]).

V2, F2|1(x|z): V2 represents the value of the second object without the presence of the

first object; it corresponds to the value of the second item for the first

auction loser(l). Consequently, F2|1(x|z) ≡ Pr[V2 ≤ x|V1 = z] signifies

the distribution of the second object’s value for the first auction loser(l)

when having drawn V1 = z.

δ(V1, V2), D(d|z): Consider a scenario where V2 = x is given. δ(V1 = z, V2 = x) represents

the value of the second object when the first auction winner(w) possesses

V1 = z worth of the first object. It reflects the value assigned by the

first auction winner(w) to the second item. Given δ(V1, V2), I define

D(d|z) ≡ Pr[δ(V1, V2) ≤ d|V1 = z] as the distribution of the second

object’s value for the first auction winner(w) who holds V1 = z worth of

the first object.

s1(V1): Bayesian Nash equilibrium bidding strategy in the first auction; a sub-

script 1 of s1 refers to the first auction.

sw2 (V1, δ(V1, V2)): First auction winner(w)’s equilibrium3 bidding strategy in the second

auction; a subscript 2 of sw2 refers to the second auction.

sl2(V1, V2): First auction loser(l)’s equilibrium bidding strategy in the second auction.

Synergy exists when the adjusted value of the second object from having won the first

object(δ(V1, V2)) exceeds the value of the second object by itself(V2). Affiliation exists when

a bidder likely draws a higher v2 the more he values the first object; namely, the conditional

distribution of V2 given V1 stochastically dominates the other with a lower V1. Unlike in Milgrom

3equilibrium means Bayesian Nash equilibrium unless otherwise discussed.
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and Weber (1982), affiliation is the relationship between the two objects, not the relationship

between the bidders’ valuation of one object.

Notations for the bids also follow.

B1, B
w
2 , B

l
2: First auction bid(B1); second auction bid of the first auction winner(Bw

2 );

second auction bid of the first auction loser(Bl
2).

G1(x): Pr[B1 ≤ x]; the distribution of the first auction bid.

Gw
2|1(x|y): Pr[Bw

2 ≤ x|B1 = y]; the distribution of second auction bid for the first

auction winner(w) given that he won the first auction with B1 = y.

Gl
2|1(x|y): Pr[Bl

2 ≤ x|B1 = y]; the distribution of second auction bid for the first

auction loser(l) given that he lost the first auction with B1 = y.

Gl
2(x|B1 ≤ y): Pr[Bl

2 ≤ x|B1 ≤ y]; the distribution of the second auction bid for the

first auction loser(l) given that his bid B1 was less than y.

Auction pair indicates the first and second auctions jointly. Let L be the total number of

auction pairs that the analyst observes; then, I can always find the ℓ-th auction pair for any

ℓ ∈ {1, . . . , L}.
Under private values assumption, any bidder i in any ℓ-th auction pair follows the steps

(0)-(iii).

step(0) The auctioneer determines the extent of information disclosure about the first auction that

he will provide to the bidders after its conclusion — in our model, he chooses to disclose

only the winner’s identity, keeping the winning bid and the losing bids confidential.

step(i) i draws v1i from F1 and places a bid, s1(v1i).

step(ii) The auctioneer concludes the first auction and announces the information based on the

chosen policy in step(0). Each bidder learns whether he has won or lost in the first auction

without the knowledge of the other bidders’ bids.

step(iii) i draws v2i from F2|1(·|v1i). Given the draw of v2i, if he is the first auction winner he

values the second object at δ(v1i, v2i) and places a bid sw2 (v1i, δ(v1i, v2i));

v1i and v2i are not drawn at the same step, which follows the spirit of Kong (2021); v1i is

fixed at step(i), and it influences the distribution of V2 in step(iii).

I use Assumptions 1-5.

Assumption 1 (No Dropout) Given any ℓ-th auction pair from ℓ ∈ {1, . . . , L}, the set of

bidders remains the same across the first and the second auction (No dropout).

Assumption 2 (No endogenous participation across auction pairs) The set of bidders varies

exogenously across elements in {1, . . . , L}.
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Assumption 3 (Independence4 across auction pairs) Pick arbitrary two elements, say (a, b),

from {1, . . . , L}2. Any result from the a-th auction pair has no effect on bidders’ valuations and

their strategies in the b-th auction pair and vice-versa.

Assumption 4 δ is a non-stochastic function from a set R2
+ to R+, which is increasing5 in V2

for every V1.

Assumptions 1-4 render the identification and estimation of the model primitives, [F1, F2|1, δ],

tractable. Among the assumptions, the Assumption 4 implies that if the value of the second

object increases in the absence of the first object, then the adjusted value of the second object

can never be diminished from owning the first object.

Assumption 5 discusses the independence of valuations across bidders.

Assumption 5 (Independence of valuations across bidders) Pick arbitrary ℓ ∈ {1, . . . , L} and

denote the number of bidders as Iℓ. The values V1j , j = 1, . . . , Iℓ are independent and identically

distributed according to F1; the pairs (V1j , V2j), j = 1, . . . , Iℓ are independent with a joint density

given by f(v11, v21, . . . , v1Iℓ , v2Iℓ) =
∏Iℓ

j=1 f(v1j , v2j).

Within a single bidder j ∈ {1, . . . , Iℓ}, V2j and V1j are dependent through F2|1 as expressed in

step(iii); across the bidders, the pairs (V1, V2) are independent by Assumption 5, but the second

auction bids (B2j , j = 1, . . . , Iℓ) are not necessarily independent as described in Remark 1.

Remark 1 The equilibrium bids s1(V1j), j = 1, . . . , Iℓ in the first auction are independent and

identically distributed as Pr[s1(V1) ≤ ·]. Without loss of generality let bidder k be the winner

of the first auction. The equilibrium bids sw2 (V1k, δ(V1k, V2k)), s
l
2(V1j , V2j), j ̸= k in the second

auction are not necessarily independent.

The intuition behind the second auction bids not necessarily being independent is that a

bidder i becoming w or l in the second auction depends on other bidders’ V1j , j ̸= i. Instead,

if I condition on the first auction’s winning bid and winner’s identity, the same second auction

bids become independent (Lemma 1).

Lemma 1 Let the first auction winner be a bidder i. The Iℓ second auction bids are independent

conditional on {W1 = i, Bmax
1 = b1i} = {Bmax

1,−i ≤ B1i = b1i}. The distribution of B2i given

{Bmax
1,−i ≤ B1i = b1i} is Gw

2|1(·|b1i) whereas for j ̸= i the distribution of B2j given {Bmax
1,−i ≤ B1i =

b1i} is Gl
2(·|B1 ≤ b1i).

Lastly, I assume in Sections 3 and 4 that the observed bids result from the equilibrium play, so

that b1 = s1, b
w
2 = sw2 , and bl2 = sl2 hold.

2.2 Equilibrium Strategies

I derive equilibrium strategies, [s1, s
w
2 , s

l
2], such that each strategy is strictly monotone, i.e., s1

is increasing in V1 and
[
sw2 , s

l
2

]
are increasing in V2 for every V1.

4‘independence’ means ‘mutual independence’ unless otherwise discussed.
5‘increasing’ is equivalent to ‘strictly increasing’ unless otherwise discussed.
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Consider a bidder i with valuations (v1i, v2i) who has to choose b1i in the first auction and

bw2i(resp., b
l
2i) in the second auction if he wins(resp., loses) the first auction — the bids [b1i, b

w
2i, b

l
2i]

need not be the equilibrium bids
[
s1(v1i), s

w
2 (v1i, δ(v1i, v2i)), s

l
2(v1i, v2i)

]
. Assume that bidder

i’s competitors follow the equilibrium strategies so that [B1j = s1, B
w
2j = sw2 , B

l
2j = sl2, j ̸= i],

holds.

Let the number of bidders be I, and according to Assumption 1 the set of bidders remains

the same in both the first and second auctions. To characterize the equilibrium strategies I

reason backward and consider the second auction, which is an asymmetric first-price sealed-bid

auction distinguishing whether bidder i won or lost the first auction.

When i is the First Auction Winner: At the start of the second auction or step(iii) he only

knows that the highest competing bid in the first auction, Bmax
1,−i, was smaller than his winning

bid b1i, i.e., B
max
1,−i ≤ b1i. Given

{
Bmax

1,−i ≤ b1i, V1i = v1i, V2i = v2i

}
the distribution of the highest

competing bid Bmax
2,−i in the second auction is,

Hw
2 (·; b1i) ≡ Pr

[
Bmax

2,−i ≤ · | Bmax
1,−i ≤ b1i, V1i = v1i, V2i = v2i

]
(1)

= Pr
[
sl2 (V1j , V2j) ≤ ·, j ̸= i | s1 (V1j) ≤ b1i, j ̸= i, V1i = v1i, V2i = v2i

]
= Pr

[
sl2 (V1j , V2j) ≤ ·, j ̸= i | s1 (V1j) ≤ b1i, j ̸= i

]
=
∏
j ̸=i

Pr [B2j ≤ · | B1j ≤ b1i] ≡ Gl
2 (· | B1 ≤ b1i)

I−1 ,

where the third and last rows in (1) hold by Assumption 5.6 Using Hw
2 (·; b1i) the expected profit

from choosing bw2i in the second auction is πw
2 (v1i, v2i, b1i, b

w
2i) ≡ [δ (v1i, v2i)− bw2i]H

w
2 (bw2i; b1i)

given (v1i, v2i, b1i) are fixed. The first-order condition of πw
2 (v1i, v2i, b1i, b

w
2i) with respect to bw2i

is,

δ (v1i, v2i) = bw2i +
Hw

2 (bw2i; b1i)

hw2 (bw2i; b1i)
≡ ξw2 (b1i, b

w
2i). (2)

Assume that ξw2 (b1i, b
w
2i) is increasing in bw2i so that by Lemma 2 I have a unique solution denoted

as b̃w2i ≡ s̃w2 (v1i, δ(v1i, v2i), b1i). Using b̃
w
2i, the expected profit in the second auction upon winning

the first auction is,

π̃w
2 (v1i, v2i, b1i) = Hw

2

(
b̃w2i; b1i

)2
/hw2

(
b̃w2i; b1i

)
.

A bidder i uses π̃w
2 (v1i, v2i, b1i) at step(i). Assume that he has drawn v1i and made a bid b1i

and is unaware of the outcome of the first auction. By the unawareness the continuation value

for winning the first auction at step(i) relies on π̃w
2 (v1i, v2i, b1i) as follows.

Vw (v1i, b1i) ≡ EV2|V1

[
π̃w
2 (v1i, V2i, b1i) | Bmax

1,−i ≤ b1i, v1i
]

(3)

= EV2|V1

Hw
2

(
B̃w

2i; b1i

)2
hw2

(
B̃w

2i; b1i

) | v1i

 ,

6Appendix A.5 includes an alternative derivation of Hw
2 (·; b1i).
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where B̃w
2i ≡ s̃w2 (v1i, δ(v1i, V2i), b1i) is bidder i’s second auction optimal bid when he has won

the first auction with a bid b1i. I will use ∂Vw(v1i, b1i)/∂b1i in (9).

∂Vw (v1i, b1i)

∂b1i
=

dG1 (b1i)
I−1 /db1i

G1 (b1i)
I−1

× (4)

EV2|V1

[
Hw

2 (B̃
w
2i; b1i)

hw2 (B̃
w
2i; b1i)

[
Gl

2(B̃
w
2i | B1 ≤ b1i)

I−2Gl
2|1(B̃

w
2i | b1i)−Hw

2 (B̃
w
2i; b1i)

]
| v1i

]
.

When i is the First Auction Loser: Let the first auction winner be a bidder k ̸= i. At the

start of the second auction or step(iii), only thing a bidder i knows is {W1 = k} = {B1k >

b1i, B1k > B1j , j /∈ {i, k}}. Given the condition the distribution of the highest competing bid

Bmax
2,−i in the second auction is,

H l
2 (·; b1i) ≡ Pr

[
Bmax

2,−i ≤ · | B1k > b1i, B1k > B1j , j /∈ {i, k}, V1i = v1i, V2i = v2i
]

= Pr[sw2 (V1k, δ(V1k, V2k)) ≤ ·, sl2(V1j , V2j) ≤ ·, j /∈ {i, k}

| s1(V1k) > b1i, s1(V1k) > s1(V1j), j /∈ {i, k}, V1i = v1i, V2i = v2i]

= Pr
[
Bmax

2,−i ≤ · | Bmax
1,−i > b1i

]
=

1

Pr
[
Bmax

1,−i > b1i

] ∫ b1

b1i

Pr
[
Bmax

2,−i ≤ · | Bmax
1,−i = x

]
dPr

[
Bmax

1,−i ≤ x
]
,

where the third row holds by Assumption 5. I have an equivalent expression for H l
2(·; b1i) in

(5) because Pr[Bmax
2,−i ≤ · | Bmax

1,−i = x] = Gl
2 (· | B1 ≤ x)I−2Gw

2|1(· | x) holds for b1i ≤ x ≤ b1 as

shown in Kong (2021).

H l
2 (·; b1i) =

1

1−G1 (b1i)
I−1

∫ b1

b1i

Gl
2 (· | B1 ≤ x)I−2Gw

2|1(· | x)dG1(x)
I−1, (5)

since Pr
[
Bmax

1,−i ≤ x
]
= G1(x)

I−1. Using H l
2(·; b1i) the expected profit from choosing bl2i in

the second auction is πl
2

(
v2i, b1i, b

l
2i

)
≡
(
v2i − bl2i

)
H l

2

(
bl2i; b1i

)
given (v2i, b1i) are fixed. The

first-order condition of πl
2(v2i, b1i, b

l
2i) with respect to bl2i is,

v2i = bl2i +
H l

2

(
bl2i; b1i

)
hl2
(
bl2i; b1i

) ≡ ξl2(b1i, b
l
2i). (6)

Assume that ξl2(b1i, b
l
2i) is increasing in bl2i so that by Lemma 2 I have a unique solution denoted

as b̃l2i ≡ s̃l2 (v2i, b1i). Using b̃l2i the expected profit in the second auction upon losing the first

auction is,

π̃l
2 (v2i, b1i) = H l

2

(
b̃l2i; b1i

)2
/hl2

(
b̃l2i; b1i

)
.

A bidder i uses π̃l
2 (v2i, b1i) at step(i). Assume that he has drawn v1i and made a bid b1i

and is unaware of the outcome of the first auction. By the unawareness the continuation value
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for losing the first auction at step(i) relies on π̃l
2 (v2i, b1i).

V l (v1i, b1i) ≡ EV2|V1

[
π̃l
2 (V2i, b1i) | Bmax

1,−i > b1i, v1i

]
(7)

= EV2|V1

H l
2

(
B̃l

2i; b1i

)2
hl2

(
B̃l

2i; b1i

) | v1i

 ,

where B̃l
2i ≡ s̃l2 (V2i, b1i) is bidder i ’s second-auction optimal bid when he has lost the first

auction with a bid b1i. I will use ∂V l(v1i, b1i)/∂b1i in (9).

∂V l (v1i, b1i)

∂b1i
=

dG1 (b1i)
I−1 /db1i

1−G1 (b1i)
I−1

× (8)

EV2|V1

[
H l

2(B̃
l
2i; b1i)

hl2(B̃
l
2i; b1i)

[
H l

2(B̃
l
2i; b1i)−Gl

2(B̃
l
2i | B1 ≤ b1i)

I−2Gw
2|1(B̃

l
2i | b1i)

]
| v1i

]
.

The First and Second Auction strategies: A bidder i is at step(i). The expected profit from

choosing b1i in the first auction given v1i is,

π (v1i, b1i) = [v1i − b1i + Vw (v1i, b1i)]G1 (b1i)
I−1 + V l (v1i, b1i)

[
1−G1 (b1i)

I−1
]
.

Differentiating π(v1i, b1i) with respect to b1i gives the first-order condition,

v1i = b1i +
1

I − 1

G1 (b1i)

g1 (b1i)
−

∂
{
Vw(v1i, b1i)G1(b1i)

I−1 + V l(v1i, b1i)[1−G1 (b1i)
I−1]

}
/∂b1i

dG1 (b1i)
I−1 /db1i

= b1i +
1

I − 1

G1 (b1i)

g1 (b1i)
− Vw (v1i, b1i) + V l (v1i, b1i)

− ∂Vw (v1i, b1i)

∂b1i

G1 (b1i)
I−1

dG1 (b1i)
I−1 /db1i

− ∂V l (v1i, b1i)

∂b1i

[1−G1 (b1i)
I−1]

dG1 (b1i)
I−1 /db1i

.

Using (3)-(4) and (7)-(8), the first-order condition is equivalent to the following,

v1i = b1i +
1

I − 1

G1(b1i)

g1(b1i)
(9)

− EV2|V1

[
Hw

2 (B̃
w
2i; b1i)

hw2 (B̃
w
2i; b1i)

Gl
2(B̃

w
2i | B1 ≤ b1i)

I−2Gl
2|1(B̃

w
2i | b1i) | v1i

]

+ EV2|V1

[
H l

2(B̃
l
2i; b1i)

hl2(B̃
l
2i; b1i)

Gl
2(B̃

l
2i | B1 ≤ b1i)

I−2Gw
2|1(B̃

l
2i | b1i) | v1i

]
,

where B̃w
2i ≡ s̃w2 (v1i, δ(v1i, V2i), b1i) and B̃l

2i ≡ s̃l2 (V2i, b1i).

Assume the equilibrium where all the bidders including bidder i follow equilibrium strategies.

The following holds for all the bidders at step(iii) given (v1i, v2i).

b1i = s1(v1i), b
w
2i = sw2 (v1i, δ(v1i, v2i)), b

l
2i = sl2(v1i, v2i),

B1j = s1, B
w
2j = sw2 , B

l
2j = sl2 for j ̸= i.
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i’s equilibrium bids [bw2i, b
l
2i] must equal the optimal bids [b̃w2i, b̃

l
2i] defined in (2) and (6). It

implies that at step(iii) the following holds in equilibrium for bidder i with (v1i, v2i).

sw2 (v1i, δ(v1i, v2i)) = bw2i = b̃w2i ≡ s̃w2 (v1i, δ(v1i, v2i), s1(v1i)),

sl2(v1i, v2i) = bl2i = b̃l2i ≡ s̃l2(v2i, s1(v1i)).

The equivalences demonstrate the property that the strategies [sw2 (V1, ·), sl2(V1, ·)] are increasing
for every V1. s

w
2 (V1, ·) exhibits increasing behavior by the following reasoning: ξw2 (b1i, b

w
2i) in (2)

increases with bw2i for a given b1i = s1(v1i) implying that an increase in bw2i leads to an overall

increase in δ(v1i, v2i). Given v1i is fixed and δ(v1i, ·) is increasing according to Assumption 4

it indicates that an increase in bw2i implies an increase in v2i. By applying the same reasoning

the decrease in bw2i implies a decrease in v2i. Using contraposition the increase(decrease) in v2i

increases(decreases) bw2i. Since b
w
2i = sw2 (v1i, δ(v1i, v2i)) holds in equilibrium, I prove the strategy

sw2 is increasing in v2i. To demonstrate the increasing nature of sl2(V1, ·) I use the similar line

of reasoning, substituting (6) and bl2i = sl2(v1i, v2i) for (2) and bw2i = sw2 (v1i, δ(v1i, v2i)).

In equilibrium at step(i) the following hold for a bidder i with v1i; V2i is a random variable

at the step.

b1i = s1(v1i),

sw2 (v1i, δ(v1i, V2i)) = Bw
2i = B̃w

2i ≡ s̃w2 (v1i, δ(v1i, V2i), s1(v1i)),

sl2(v1i, V2i) = Bl
2i = B̃l

2i ≡ s̃l2(V2i, s1(v1i)),

where B̃w
2i and B̃l

2i were defined in (3) and (7). Using Bw
2i = B̃w

2i and Bl
2i = B̃l

2i I replace B̃
w
2i with

Bw
2i and B̃l

2i with Bl
2i in (9). The replacement yields each conditional expectation being taken

over Bw
2 |V1 and Bl

2|V1. If s1(·) is increasing(which I will verify soon), conditioning on V1 = v1i

is equivalent to conditioning on B1 = b1i. It implies that the conditional expectations Bw
2 |V1

and Bl
2|V1 equal Bw

2 |B1 ∼ Gw
2|1(·|b1i) and Bl

2|B1 ∼ Gl
2|1(·|b1i). The equivalences transform (9)

into (10).

v1i = b1i +
1

I − 1

G1 (b1i)

g1 (b1i)
(10)

− EBw
2 |B1

[
Hw

2 (Bw
2i; b1i)

hw2 (Bw
2i; b1i)

Gl
2 (B

w
2i | B1 ≤ b1i)

I−2Gl
2|1 (B

w
2i | b1i) | b1i

]
+ EBl

2|B1

[
H l

2

(
Bl

2i; b1i
)

hl2
(
Bl

2i; b1i
) Gl

2

(
Bl

2i | B1 ≤ b1i

)I−2
Gw

2|1

(
Bl

2i | b1i
)
| b1i

]
≡ ξ1 (b1i) .

Assume that ξ1(b1i) is increasing in b1i so that by Lemma 2 I have a unique solution denoted as

b̃1i, which implies v1i = ξ1(b̃1i) ⇔ ξ−1
1 (v1i) = b̃1i. In equilibrium the optimal bid b̃1i must equal

b1i = s1(v1i) resulting in b̃1i = b1i = s1(v1i). Since ξ−1
1 (v1i) = b̃1i I have ξ−1

1 (v1i) = b̃1i = b1i =

s1(v1i) implying s1 = ξ−1
1 . Given the assumption of ξ1 being increasing, I conclude that s1 is

also increasing.

Lemma 2 verifies why the restrictions imposed on the right-hand side of (2), (6), and (10)

imply the uniqueness of optimal bids.
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Lemma 2 Assume ξw2 and ξl2 exist. If ξw2 (b1i, b
w
2i)(resp., ξ

l
2(b1i, b

l
2i)) is increasing in bw2i(resp.,

bl2i) for every b1i, unique optimal bid that satisfies (2)(resp., (6)) exists. If ξ1 is increasing in

b1i, unique optimal bid that satisfies (10) exists.

Gl
2(·|B1 ≤ ·) and Gw

2|1(·|·) are necessary conditions for the existence of ξw2 (b1i, b
w
2i) and

ξl2(b1i, b
l
2i). Cases exist where the necessary conditions may not hold. For example, if two goods

are perfect complements, Gl
2(·|B1 ≤ ·) fails to exist because the first auction losers forgo the

second object, anticipating that the first auction winner will bid highly in the second auction.

If two goods are perfect substitutes, Gw
2|1(·|·) does not exist because the first auction winner

forgoes the second object, feeling that the first object is sufficient. Two examples illustrate that

our model is not applicable to every bid distribution, as discussed in detail in Theorem 3. The

Theorem, analogous to Theorem 1 in Guerre et al. (2000), verifies that the strategies [s1, s
w
2 , s

l
2]

are monotone Bayesian Nash Equilibrium strategies.

Theorem 3 Assuming that the bid distributions are absolutely continuous and satisfy the as-

sumptions in Lemma 2, I can identify the model primitives, [F1, F2|1, δ], using the approach

introduced in Section 3. Given the identified model primitives, the triplet [ξ1, ξw2 , ξl2] from

[(10), (2) ,(6)] are the quasi-inverse of the Bayesian Nash Equilibrium strategies, i.e., ξ1(b1) =

s−1
1 (b1) = v1, ξ

w
2 (b1, b

w
2 ) = (sw2 )

−1(bw2 ; b1) = δ(v1, v2), and ξl2(b1, b
l
2) = (sl2)

−1(bl2; b1) = v2.

Theorem 3 requires that the triplet [ξ1(b1), ξ
w
2 (b1, b

w
2 ), ξ

l
2(b1, b

l
2)] are increasing and differ-

entiable with respect to [b1, b
w
2 for any b1, b

l
2 for any b1]. The requirement on the triplet, in

conjunction with the Theorem, establishes the following properties of the equilibrium strategies:

• first auction equilibrium strategy, s1 = ξ−1
1 , is increasing and differentiable with respect

to v1 ∈ [ξ1(b1), ξ1(b1)].

• first auction loser’s second auction equilibrium strategy, sl2 = (ξl2)
−1, is increasing and

differentiable with respect to v2 ∈
[
ξl2(b1, b2), ξ

l
2(b1, b2)

]
given any v1 ∈ [ξ1(b1), ξ1(b1)].

• first auction winner’s second auction equilibrium strategy, sw2 = (ξw2 )
−1, is increasing and

differentiable with respect to v2 ∈ [ξl2(b1, b2), ξ
l
2(b1, b2)] given any v1 ∈ [ξ1(b1), ξ1(b1)].

When deriving the equilibrium strategies in Theorem 3, I restricted the triplet to have spe-

cific properties. It implies that under the restrictions the Bayesian Nash equilibrium strategies,

[s1, s
l
2 sw2 ], are only allowed to be monotone7 and differentiable. Along with the two properties,

the equilibrium strategies are less demanding to compute in programs as it does not involve

solving differential equations; I still need numerical integration on the observed bids, but an

iteration of the optimization procedure is not required. Since the strategies consist of observed

bids, I can plot the strategies [s1, s
l
2 sw2 ] as shown in Section 5.

3 Identification

I consider two cases of the observations available to the analyst:

7‘monotone’ and ‘monotonicity’ refer to ‘strictly monotone’ and ‘strict monotonicity unless otherwise stated.
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• Case 1: The dataset only includes the bids of the winners (Bmax
1ℓ , Bmax

2ℓ ) and their identities

(W1ℓ,W2ℓ) in each of the two auctions for any ℓ ∈ {1, . . . , L}.

• Case 2: The dataset shows all the bids and bidders’ identities in each of the two auctions

for any ℓ ∈ {1, . . . , L}.

Case 2 requires more information compared to Case 1. Since Case 1 is more common in practice

it is best to address it first. As discussed in 3.2 addressing Case 1 implies addressing Case 2.

I assume that the observed bids result from the equilibrium play throughout Section 3. The

equilibrium play assumption implies that the bidders’ bids satisfy the first-order conditions (2),

(6), and (10). The three conditions connect bid distributions to bidders’ valuations, and the

connection relies on the assumptions stated in Lemma 2. I maintain the same assumptions when

identifying the model primitives [F1, F2|1, δ]; so, it is the restriction imposed on the bid distri-

butions that allows us to identify the primitives, rather than the reliance on a prior parametric

specification.

3.1 Case 1

The observations I8 see are (Bmax
1ℓ ,W1ℓ, B

max
2ℓ ,W2ℓ, Zℓ, Iℓ) where ℓ = 1, . . . , L. Iℓ is the number

of bidders in ℓ-th auction pair and it remains the same across the first and second auction by

Assumption 1. Bmax
tℓ is the maximum bid among {Bt1, . . . , BtIℓ}; Wtℓ is the index of the random

winner in the t-th auction within the ℓ-th auction pair; Zℓ is the observed characteristic in ℓ-th

auction pair. It may consist of characteristics Z1ℓ of the first auctioned object, characteristics

Z2ℓ of the second auctioned object, and interactions between Z1ℓ and Z2ℓ.

For the rest of 3.1 assume that I am interested in identifying the model primitives given

(Z = z, I = I) so that the primitives are [F1(·|z, I), F2|1(·|·, z, I), δ(V1, V2; z)]. To maintain

brevity I will omit writing the (Z = z, I = I) in 3.1. Given the limited information available in

Case 1, I require multiples steps 3.1.1-3.1.5 for identification.

3.1.1 Identification of Gw
2|1(· | ·) and Gl

2(· | B1 ≤ ·)

Without loss of generality assume that a bidder i won the first auction with b1 ≡ b1i. From

Lemma 1 I know that the second auction bids (B2j , j = 1 . . . , I) are independent with distribu-

tions Gw
2|1 (· | b1) for i and Gl

2 (· | B1 ≤ b1) for j ̸= i, conditional on the event {Bmax
1,−i ≤ B1i =

b1} = {W1 = i, Bmax
1 = b1}. Given the conditional independence of the second auction bids, I

use Lemma 4 with Hj (· | b1) = Pr[Bmax
2 ≤ ·,W2 = j | W1 = i, Bmax

1 = b1] for j = 1, . . . , I.

8Throughout Sections 3 and 4, ‘I’ is equivalent to ‘the analyst.’
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For j ̸= i I can rewrite Hj (· | b1) as (11).

Hj (· | b1) =
1

I − 1
Pr [Bmax

2 ≤ ·,W2 ̸= i | W1 = i, Bmax
1 = b1] (11)

=
1

I − 1
Pr [Bmax

2 ≤ · | W2 ̸= i,W1 = i, Bmax
1 = b1]× Pr [W2 ̸= i | W1 = i, Bmax

1 = b1]

=
1

I − 1
Pr [Bmax

2 ≤ · | W2 ̸= W1,W1 = i, Bmax
1 = b1]× Pr [W2 ̸= W1 | W1 = i, Bmax

1 = b1]

=
1

I − 1
Pr [Bmax

2 ≤ · | W2 ̸= W1, B
max
1 = b1]× Pr [W2 ̸= W1 | Bmax

1 = b1]

=
1

I − 1
Pr [Bmax

2 ≤ ·,W2 ̸= W1 | Bmax
1 = b1] ≡

1

I − 1
M l

2 (· | b1) .

When j = i I have,

Hi (· | b1) = Pr [Bmax
2 ≤ ·,W2 = i | W1 = i, Bmax

1 = b1] (12)

= Pr [Bmax
2 ≤ · | W2 = i,W1 = i, Bmax

1 = b1]× Pr [W2 = i | W1 = i, Bmax
1 = b1]

= Pr [Bmax
2 ≤ · | W2 = W1,W1 = i, Bmax

1 = b1]× Pr [W2 = W1 | W1 = i, Bmax
1 = b1]

= Pr [Bmax
2 ≤ · | W2 = W1, B

max
1 = b1]× Pr [W2 = W1 | Bmax

1 = b1]

= Pr [Bmax
2 ≤ ·,W2 = W1 | Bmax

1 = b1] ≡ Mw
2 (· | b1) .

M l
2 (· | b1) and Mw

2 (· | b1) in (11)-(12) are the distributions of the winning bid in the second

auction when it is won by a first auction loser and first auction winner, conditional on the

first auction winning bid being b1
9. Given (11)-(12) I use Lemma 4 to identify Gw

2|1(· | b1) and
Gl

2(· | B1 ≤ b1): Fi(·) and Fj(·) in Lemma 4 are Gw
2|1(· | b1) and Gl

2(· | B1 ≤ b1).

Gw
2|1 (· | b1) = exp

{
−
∫ b2

·
(Pr [Bmax

2 ≤ b | Bmax
1 = b1])

−1 dMw
2 (b | b1)

}
, (13)

Gl
2 (· | B1 ≤ b1) = exp

{
− 1

I − 1

∫ b2

·
(Pr [Bmax

2 ≤ b | Bmax
1 = b1])

−1 dM l
2 (b | b1)

}
, (14)

since Hi (· | b1) +
∑

j ̸=iHj (· | b1) = Mw
2 (· | b1) + M l

2 (· | b1) = Pr [Bmax
2 ≤ · | Bmax

1 = b1]. By

varying b1 I identify Gw
2|1(· | ·) and Gl

2(· | B1 ≤ ·).

3.1.2 Identification of Hw
2 (·; ·), H l

2(·; ·), and G1(·)

From (1) and (5) in 2.2, I have

Hw
2 (·; b1) = Gl

2 (· | B1 ≤ b1)
I−1 ,

H l
2 (·; b1) =

1

1−G1 (b1)
I−1

∫ b1

b1

Gl
2 (· | B1 ≤ x)I−2Gw

2|1(· | x)dG1(x)
I−1.

I have identified Gl
2(·|B1 ≤ ·) and Gw

2|1(·|·) in 3.1.1. I can also identify G1(·) by observing the

first auction winning bids(Bmax
1 ), which follows a distribution of G1(·)I . It implies the following

9Strictly speaking, M l
2 (· | b1) and Mw

2 (· | b1) are not distributions as they do not integrate to one.
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equation.

G1(·) = Pr[Bmax
1 ≤ ·]1/I .

By varying b1 I identify Hw
2 (·; ·) and H l

2(·; ·).

3.1.3 Identification of D̃(· | ·), Gl
2|1(· | ·), and F̃2|1(· | ·)

I introduce new notations that are comparable to the notations in 2.1.

δ̃(B1, V2): Consider a scenario where B1 = b1 is given. δ̃(B1 = b1, V2 = x) represents the

value of the second object when the first auction winner(w) possesses B1 = b1

worth of the first object.

D̃(·|b1): Pr[δ̃(b1, V2) ≤ ·|B1 = b1]; the distribution of the value of the second object for

the first auction winner(w) given that he won the first auction with B1 = b1.

F̃2|1(·|b1): Pr[V2 ≤ ·|B1 = b1]; the distribution of the value of the second object for the

first auction loser(l) given that he lost the first auction with B1 = b1.

δ̃(B1, V2) is equivalent to δ(V1, V2), i.e., δ(V1, V2) = δ̃(s1(V1), V2) as shown in Appendix A.7. By

the equivalence the first-order condition, (2), for an arbitrary bidder i is,

δ̃ (B1i, V2i) = Bw
2i +

Hw
2 (Bw

2i;B1i)

hw2 (Bw
2i;B1i)

, (15)

where Bw
2i = sw2 (V1i, V2i) and B1i = s1 (V1i). Note that the observations only include the

winner’s bid and identity, (Bmax
t ,Wt), for t = 1, 2. By the limitation, I observe (B1i, B

w
2i) in

(15) only if i wins both the first and second auctions. It implies that unless I condition on

W1 = W2 = i I cannot always recover δ̃ (B1i, V2i) for every bidder i from (15).

To address the problem, I instead construct D̃(·|b1) and F̃2|1(·|b1) in 3.1.3 and identify δ̃ (b1, ·)
in 3.1.4. To construct D̃(d|b1) I use Gw

2|1 (· | b1).

D̃(d|b1) ≡ Pr
[
δ̃(B1, V2) ≤ d | B1 = b1

]
= Pr

Bw
2 +

Hw
2 (B

w
2 ;B1)

hw2 (B
w
2 ;B1)︸ ︷︷ ︸

≡ξw2 (B1,Bw
2 ) by (2)

≤ d | B1 = b1

 (16)

= EBw
2 |B1

[
1
(
ξw2 (B1, B

w
2 ) ≤ d

)
| B1 = b1

]
=

∫ b2

b2

1
(
ξw2 (B1, b) ≤ d

)
dGw

2|1(b|b1),

where d ∈ [ξw2 (b1, b2), ξ
w
2 (b1, b2)]. Since I have identified Gw

2|1 (· | b1), H
w
2 (·; b1), and its density

hw2 (·; b1) in 3.1.1-3.1.2 I conclude that D̃ (· | b1) is also identified. By varying b1 I identify

D̃ (· | ·).
Before constructing F̃2|1(·|b1) I show that the observations I have prevent us from construct-

ing F̃2|1(·|b1) directly from the first-order condition, (6). For an arbitrary bidder i I have the
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following.

V2i = Bl
2i +

H l
2

(
Bl

2i;B1i

)
hl2
(
Bl

2i;B1i

) , (17)

where Bl
2i = sl2 (V1i, V2i) and B1i = s1 (V1i). Since winning bids are only shown, I see Bl

2i only if

i loses the first auction and wins the second auction so that Bmax
2 = Bl

2i. But if i loses the first

auction I do not observe his bid B1i as Bmax
1 ̸= B1i. It implies that I cannot directly recover

V2i for every bidder i from (17).

To overcome the difficulty, I instead use Gl
2|1 (· | b1) to construct F̃2|1(·|b1). I can iden-

tify Gl
2|1(· | b1) by using the relationship Gl

2 (· | B1 ≤ b1) = [1/G1 (b1)]
∫ b1
b1

Gl
2|1(· | u)dG1(u).

Differentiating both sides of the equation with respect to b1 yields (18),

Gl
2|1 (· | b1) = Gl

2 (· | B1 ≤ b1) +
G1 (b1)

g1 (b1)

∂Gl
2 (· | B1 ≤ b1)

∂b1
. (18)

The right-hand side of (18) has Gl
2 (· | B1 ≤ b1) , G1 (b1), and their derivatives which have been

identified in 3.1.1-3.1.2. Using Gl
2|1(· | b1) I have (19) for F̃2|1(· | b1).

F̃2|1 (v2 | b1) ≡ Pr [V2 ≤ v2 | B1 = b1] = Pr

Bl
2 +

H l
2(B

l
2;B1)

hl2(B
l
2;B1)︸ ︷︷ ︸

≡ξl2(B1,Bl
2) by (6)

≤ v2 | B1 = b1

 (19)

= EBl
2|B1

[
1
(
ξl2(B1, B

l
2) ≤ v2

)
| B1 = b1

]
=

∫ b2

b2

1
(
ξl2(B1, b) ≤ v2

)
dGl

2|1 (b | b1) ,

where v2 ∈ [ξl2(b1, b2), ξ
l
2(b1, b2)]. Since I have identified Gl

2|1(·|b1) in (18) and H l
2 (·; b1) along

with its density hl2 (·; b1) in 3.1.2, I conclude that F̃2|1 (· | b1) is identified. By varying b1 I

identify F̃2|1 (· | ·).

3.1.4 Identification of δ̃(·, ·)

I adopt the approach proposed in Kong (2021). The approach fixes a first auction bid at b1

and compares the second object’s value distribution between the first auction winner and the

loser, D̃ (· | b1) and F̃2|1 (· | b1). Comparing the quantiles between the two identifies δ̃(b1, ·) given
Assumption 4 holds.

Assumption 4 assumes δ(V1, ·) is increasing in V2 for every V1. Since δ(V1, ·) = δ̃(s1(V1), ·)
holds δ̃(B1, ·) is also increasing in V2 for every B1 = s1(V1). By the monotonicity of δ̃(B1, ·)
the α-quantile of the random variable δ̃ (b1, V2)

10 equals δ̃ (b1, v2(α|b1)), where v2(α|b1) is the

α-quantile of F̃2|1(·|b1) ≡ Pr[V2 ≤ ·|B1 = b1]. I am using the property that the quantile is

invariant to monotone transformation.

10δ̃ (b1, V2) is a function of a random variable V2. The function here is δ̃(b1, ·) where b1 is a specified value.
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Given the property, I have the following equality for any α ∈ [0, 1],

D̃
(
δ̃ (b1, v2(α|b1)) | b1

)
= α = F̃2|1 (v2(α|b1) | b1) .

Since D̃(d|b1) is increasing in d11 I can define the inverse distribution function D̃−1(·|b1) such

that the following relation holds,

δ̃ (b1, v2(α|b1)) = D̃−1

F̃2|1
(
v2(α|b1)

∣∣b1)︸ ︷︷ ︸
=α

∣∣∣ b1
 . (20)

I have identified D̃(·|b1) and F̃2|1(·|b1) in 3.1.3, so by varying α I identify δ̃(b1, ·); figure 1

graphically depicts (20).

Figure 1: The solid line represents D̃(d | b1) from (16), with d varying between [ξw2 (b1, b2),

ξw2 (b1, b2)] = [0, 4.29]. The dotted line represents F̃2|1(v2 | b1) from (19), with v2 varying

between [ξl2(b1, b2), ξ
l
2(b1, b2)] = [0, 1.55].

Set α = 0.4, and let m and r represent the quantiles of the random variables V2 and δ̃(b1, V2).

Given m and r, if the pseudo synergy function δ̃(B1, ·) is increasing in V2 (Assumption 4), I have

δ̃(b1, v2(0.4|b1)) = δ̃(b1,m) = r. If I change α to 0.8, I have δ̃(b1, v2(0.8|b1)) = δ̃(b1,m
′) = r′;

another way to express the result is by using (20).

δ̃ (b1, v2 (0.4|b1)) = δ̃(b1,m) = r = D̃−1(0.4 | b1),

δ̃ (b1, v2 (0.8|b1)) = δ̃(b1,m
′) = r′ = D̃−1(0.8 | b1).

It implies that by varying α between [0, 1] I identify a bijective function, δ̃(b1, V2) : [0.00, 1.55] →
[0.00, 4.29]. Given δ̃(b1, ·), I identify δ̃(·, ·) by varying b1.

11Consider the last equality in (16). Based on Lemma 2 and Theorem 3 the function x+(Hw
2 (x; b1)/h

w
2 (x; b1))

is increasing in x. It implies that as d increases the corresponding D̃(d|b1) also increases.
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3.1.5 Identification of F1(·), F2|1(· | ·) and δ(·, ·)

In 3.1.1-3.1.3 I have identified the distributionsG1(·), Hw
2 (·; ·), H l

2(·; ·), Gw
2|1(· | ·), G

l
2 (· | B1 ≤ ·),

Gl
2|1(· | ·) as well as the densities g1(·), h

w
2 (·; ·), hl2(·; ·). The distributions and the densities form

the quasi-inverse bidding strategy ξ1(b1) in (10) so ξ1(b1) is identified. By varying b1 I also

identify ξ1(·). (21) shows that identifying ξ1(·) implies identifying F1(·) since G1(·) has been

identified in 3.1.2 and V1 = ξ1(B1) holds from (10).

F1(·) ≡ Pr[V1 ≤ ·] = Pr[ξ1(B1) ≤ ·] = E[1(ξ1(B1) ≤ ·)] (21)

=

∫ b1

b1

1(ξ1(b1) ≤ ·)dG1(b1).

Identification of F2|1(· | ·) uses Theorem 3. ξ1(·) = s−1
1 (·) holds which means that the first

auction bidding strategy s1(·) is identified. Given the increasing nature of s1(·) I establish the

following equivalence.

F2|1(· | v1) ≡ Pr[V2 ≤ ·|V1 = v1] = Pr[V2 ≤ ·|s1(V1) = s1(v1)] (22)

= Pr[V2 ≤ ·|B1 = b1] ≡ F̃2|1(· | b1),

alternatively (22) is the same as F̃2|1(· | b1) ≡ Pr[V2 ≤ ·|B1 = b1] = Pr[V2 ≤ ·|ξ1(B1) = ξ1(b1)] =

Pr[V2 ≤ · | V1 = v1] ≡ F2|1(· | v1). The equivalence demonstrates that identifying F̃2|1(· | b1) is
equivalent to identifying F2|1(· | v1). Since I have identified F̃2|1(· | b1) for every b1 ∈ [b1, b1] in

3.1.3 I conclude that I also identify F2|1(· | v1) for every v1 ∈ [V1, V1] = [ξ1(b1), ξ1(b1)].

Identification of δ(·, ·) uses the equality δ̃(b1, ·) = δ̃(s1(v1), ·) = δ(v1, ·). From the equality I

conclude that identifying δ̃(b1, ·) is equivalent to identifying δ(v1, ·). Since δ̃(b1, ·) was identified
for every b1 ∈ [b1, b1] in 3.1.4 and s1(·) = ξ−1

1 (·) was identified, I conclude that I also identify

δ(v1, ·) for every v1 ∈ [V1, V1] = [ξ1(b1), ξ1(b1)].

3.2 Case 2

I directly identify the second auction bid distributions of the first auction winner and the loser,

Gw
2|1(· | ·) and Gl

2|1(· | ·). I also identify Gl
2(· | B1 ≤ ·) and G1(·) from the observations. Using

(1) and (5) the distributionsHw
2 (·; ·) andH l

2 (·; ·) are identified. It implies that the identification

tasks outlined in 3.1.1-3.1.2 are easily addressed. The remaining steps, 3.1.3-3.1.5, follow the

same procedure as in Case 1.

4 Estimation

Assume that I am in Case 1(3.1) so that the observations I see are (Bmax
1ℓ , W1ℓ, B

max
2ℓ , W2ℓ, Zℓ,

Iℓ) where ℓ = 1, . . . , L. Let the observed characteristic, Zℓ, be continuous and without loss of

generality be of dimension p = 1. I fix (Z = z, I = I) and use the kernel density estimator to

estimate the model primitives, [F1(·|z, I), F2|1(·|·, z, I), δ(V1, V2; z)].
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Given ℓ-th auction pair I can calculate λℓ(b1) and K2ℓ(b2) for any b1 and b2.

λℓ(b1) ≡ K

(
b1 −Bmax

1ℓ

h1

)
K

(
z − Zℓ

hz

)
/

[∑
ℓ∈LI

K

(
b1 −Bmax

1ℓ

h1

)
K

(
z − Zℓ

hz

)]
,

K2ℓ(b2) ≡
∫ b2−Bmax

2ℓ
h2

−∞
K(u)du =

∫ b2

−∞

1

h2
K

(
x−Bmax

2ℓ

h2

)
dx,

where LI ≡ {ℓ : Iℓ = I} is the index set corresponding to auction pairs with I bidders. I

use λℓ(b1) and K2ℓ(b2) in (23)-(26); the equations use Assumption 2 that the auction pairs are

independent across {1, . . . , L}.

M̂w
2 (b2 | b1, z, I) ≡ P̂r [Bmax

2 ≤ b2,W2 = W1 | Bmax
1 = b1, z, I] (23)

=
∑

{ℓ∈LI :W1ℓ=W2ℓ}

λℓ(b1)

∫ b2

−∞

1

h2
K

(
x−Bmax

2ℓ

h2

)
dx︸ ︷︷ ︸

K2ℓ(b2)

,

m̂w
2 (b2|b1, z, I) =

∑
{ℓ∈LI :W1ℓ=W2ℓ}

λℓ(b1)
1

h2
K

(
b2 −Bmax

2ℓ

h2

)
, (24)

M̂ l
2 (b2 | b1, z, I) ≡ P̂r [Bmax

2 ≤ b2,W2 ̸= W1 | Bmax
1 = b1, z, I] (25)

=
∑

{ℓ∈LI :W1ℓ ̸=W2ℓ}

λℓ(b1)

∫ b2

−∞

1

h2
K

(
x−Bmax

2ℓ

h2

)
dx︸ ︷︷ ︸

K2ℓ(b2)

,

m̂l
2(b2|b1, z, I) =

∑
{ℓ∈LI :W1ℓ ̸=W2ℓ}

λℓ(b1)
1

h2
K

(
b2 −Bmax

2ℓ

h2

)
. (26)

(23) and (25) constitute (27), the conditional distribution of the second auction’s winning bid

given the winning bid of the first auction.

ĜBmax
2 |Bmax

1
(b2 | b1, z, I) ≡ P̂r[Bmax

2 ≤ b2 | Bmax
1 = b1, z, I] (27)

= M̂w
2 (b2 | b1, z, I) + M̂ l

2 (b2 | b1, z, I) =
∑
ℓ∈LI

λℓ(b1)K2ℓ(b2).

(23)-(27) are used in 4.1-4.5. The estimands in each subsection correspond to those discussed

in 3.1.1-3.1.5.
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4.1 Estimation of Gw
2|1(· | ·, z, I), Gl

2(· | B1 ≤ ·, z, I) and their densities

I construct Ĝw
2|1 (b2 | b1, z, I) and Ĝl

2 (b2 | B1 ≤ b1, z, I) based on (13) and (14).

Ĝw
2|1 (b2 | b1, z, I) =

∏
{ℓ∈LI :W1ℓ=W2ℓ}

exp

−λℓ(b1)

h2

∫ b2

b2

K

(
b−Bmax

2ℓ

h2

)
∑

ℓ̃∈LI
λℓ̃(b1)K2ℓ̃(b)

db

 ,

Ĝl
2 (b2 | B1 ≤ b1, z, I) =

∏
{ℓ∈LI :W1ℓ ̸=W2ℓ}

exp

− λℓ(b1)

h2(I − 1)

∫ b2

b2

K

(
b−Bmax

2ℓ

h2

)
∑

ℓ̃∈LI
λℓ̃(b1)K2ℓ̃(b)

db

 .

To construct ĝw2|1 (b2 | b1, z, I) and ĝl2 (b2 | B1 ≤ b1, z, I) I differentiate (13) and (14) with respect

to the second auction bid and replace variables with estimators.

ĝw2|1 (b2 | b1, z, I) =
m̂w

2 (b2 | b1, z, I)
ĜBmax

2 |Bmax
1

(b2 | b1, z, I)
Ĝw

2|1 (b2 | b1, z, I) ,

ĝl2 (b2 | B1 ≤ b1, z, I) =
1

I − 1

m̂l
2 (b2 | b1, z, I)

ĜBmax
2 |Bmax

1
(b2 | b1, z, I)

Ĝl
2 (b2 | B1 ≤ b1, z, I) .

The estimators on the right-hand sides are already known.

4.2 Estimation of Hw
2 (·; ·, z, I), H l

2(·; ·, z, I), and G1(· | z, I) and their densities

Given ℓ-th auction pair I can calculate K1ℓ(b1) for any b1, and ωℓ.

K1ℓ(b1) ≡
∫ b1−Bmax

1ℓ
h1

−∞
K(u)du =

∫ b1

−∞

1

h1
K

(
x−Bmax

1ℓ

h1

)
dx,

ωℓ ≡ K

(
z − Zℓ

hz

)
/
∑
ℓ∈LI

K

(
z − Zℓ

hz

)
.

K1ℓ(b1) and ωℓ are used in Ĝ1(b1 | z, I) and ĝ1(b1 | z, I),

Ĝ1(b1 | z, I) = P̂r[Bmax
1 ≤ b1 | z, I]1/I =

∑
ℓ∈LI

ωℓK1ℓ(b1)

1/I

,

ĝ1(b1 | z, I) =
1

I

∑
ℓ∈LI

ωℓK1ℓ (b1)

(1−I)/I ∑
ℓ∈LI

ωℓ
1

h1
K

(
b1 −Bmax

1ℓ

h1

) .
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The estimators of Hw
2 (b2; b1, z, I) and H l

2(b2; b1, z, I) use (1) and (5) in 2.2,

Ĥw
2 (b2; b1, z, I) = Ĝl

2 (b2 | B1 ≤ b1, z, I)
I−1 ,

Ĥ l
2 (b2; b1, z, I) =

1

1− Ĝ1 (b1 | z, I)I−1
×∫ b1

b1

Ĝl
2 (b2 | B1 ≤ x, z, I)I−2 Ĝw

2|1(b2 | x, z, I)dĜ1(x | z, I)I−1.

From 4.1-4.2 I know the right-hand sides except dĜ1(x | z, I)I−1 = d
dxĜ1(x | z, I)I−1 dx, which

is,

d

dx
Ĝ1(x | z, I)I−1 dx =

I − 1

h1I

∑
ℓ∈LI

ωℓK1ℓ(x)

−1/I ∑
ℓ∈LI

ωℓK

(
x−Bmax

1ℓ

h1

)
dx.

To construct ĥw2 (b2; b1, z, I) and ĥl2(b2; b1, z, I) I differentiate (1) and (5) with respect to the

second auction bid and replace variables with estimators.

ĥw2 (b2; b1, z, I) = (I − 1)ĝl2 (b2 | B1 ≤ b1, z, I) Ĝ
l
2 (b2 | B1 ≤ b1, z, I)

I−2 ,

ĥl2 (b2; b1, z, I) =
1

1− Ĝ1 (b1 | z, I)I−1
×∫ b1

b1

Ψ̂(b2;x, z, I)Ĝ
l
2 (b2 | B1 ≤ x, z, I)I−2 Ĝw

2|1(b2 | x, z, I)dĜ1(x | z, I)I−1,

where Ψ̂(b2;x, z, I) inside the integral is,

Ψ̂(b2;x, z, I) ≡ (I − 2)
ĝl2 (b2 | B1 ≤ x, z, I)

Ĝl
2 (b2 | B1 ≤ x, z, I)

+
ĝw2|1(b2 | x, z, I)

Ĝw
2|1(b2 | x, z, I)

=
I − 2

I − 1

m̂l
2 (b2 | x, z, I)

ĜBmax
2 |Bmax

1
(b2 | x, z, I)

+
m̂w

2 (b2 | x, z, I)
ĜBmax

2 |Bmax
1

(b2 | x, z, I)
.

The estimators that form ĥw2 (b2; b1, z, I) and ĥl2(b2; b1, z, I) are known from 4.1-4.2.

4.3 Estimation of D̃(· | ·, z, I), Gl
2|1(· | ·, z, I), and F̃2|1(· | ·, z, I)

I have a plug-in estimator of D̃ (d | b1, z, I) using (16).

ˆ̃D (d | b1, z, I) =
∫ b2

b2

1

(
x+

Ĥw
2 (x; b1, z, I)

ĥw2 (x; b1, z, I)
≤ d

)
dĜw

2|1 (x | b1, z, I) , (28)

where x+ Ĥw
2 (x; b1, z, I)/ĥ

w
2 (x; b1, z, I) is,

ξ̂w2 (b1, x; z, I) ≡ x+
Ĥw

2 (x; b1, z, I)

ĥw2 (x; b1, z, I)
= x+

ĜBmax
2 |Bmax

1
(x | b1, z, I)

m̂l
2 (x | b1, z, I)

. (29)
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(26) and (27) constitute ξ̂w2 (b1, x; z, I), which is the empirical analogue of ξw2 (b1, x; z, I) from

(2). Since ξw2 (b1, x; z, I) is increasing in x by Theorem 3, I can conclude that for a given d in

D̃(d | b1, z, I) there exists a unique second auction bid bw∗
2 (d) that satisfies ξw2 (b1, b

w∗
2 (d); z, I) =

d, i.e.,

ξw2 (b1, b
w∗
2 (d); z, I) ≡ bw∗

2 (d) +
Hw

2 (bw∗
2 (d); b1, z, I)

hw2 (bw∗
2 (d); b1, z, I)

= d,

where d ∈
[
ξw2 (b1, b2; z, I), ξ

w
2 (b1, b2; z, I)

]
. It implies that given any d in the specified range

I have D̃(d | b1, z, I) = Gw
2|1(b

w∗
2 (d) | b1, z, I). The approach, however, does not hold for

ˆ̃D (d | b1, z, I) because the empirical counterpart, ξ̂w2 (b1, x; z, I), may not be increasing, leading

to a non-unique b̂w∗
2 (d). To ensure uniqueness I define b̂w∗

2 (d) as the minimizer of the following

function.

b̂w∗
2 (d) ≡ argminx

(
ξ̂w2 (b1, x; z, I)− d

)2
≡ argminx

(
x+

Ĥw
2 (x; b1, z, I)

ĥw2 (x; b1, z, I)
− d

)2

.

Since b̂w∗
2 (d) is unique given some d, I transform (28) into (30); Ĝw

2|1(· | b1, z, I) inside (30) is

known from 4.1.

ˆ̃D(d | b1, z, I) = Ĝw
2|1(b̂

w∗
2 (d) | b1, z, I). (30)

I have a plug-in estimator of F̃2|1(v2 | b1, z, I) using (19).

ˆ̃F2|1 (v2 | b1, z, I) =
∫ b2

b2

1

(
x+

Ĥ l
2 (x; b1, z, I)

ĥl2 (x; b1, z, I)
≤ v2

)
dĜl

2|1 (x | b1, z, I) , (31)

where x+ Ĥ l
2(x; b1, z, I)/ĥ

l
2(x; b1, z, I) is,

ξ̂l2(b1, x; z, I) ≡ x+
Ĥ l

2(x; b1, z, I)

ĥl2(x; b1, z, I)
(32)

= x+

∫ b1
b1

Ĝl
2 (x | B1 ≤ b, z, I)I−2 Ĝw

2|1(x | b, z, I)dĜ1(b | z, I)I−1∫ b1
b1

Ψ̂(x; b, z, I)Ĝl
2 (x | B1 ≤ b, z, I)I−2 Ĝw

2|1(x | b, z, I)dĜ1(b | z, I)I−1
.

The estimators in 4.1-4.2 make up ξ̂l2(b1, x; z, I), which is the empirical analogue of ξl2(b1, x; z, I)

from (6). ξl2(b1, x; z, I) is increasing in x by Theorem 3 but ξ̂l2(b1, x; z, I) may not. I use the

same approach used in ˆ̃D(d | b1, z, I), leading to,

b̂l∗2 (v2) ≡ argminx

(
ξ̂l2(b1, x; z, I)− v2

)2
≡ argminx

(
x+

Ĥ l
2 (x; b1, z, I)

ĥl2 (x; b1, z, I)
− v2

)2

,

where v2 ∈
[
ξ̂l2(b1, b2; z, I), ξ̂

l
2(b1, b2; z, I)

]
. Since b̂l∗2 (v2) is unique given some v2, I transform
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(31) into (33).

ˆ̃F2|1(v2 | b1, z, I) = Ĝl
2|1(b̂

l∗
2 (v2) | b1, z, I). (33)

It needs Ĝl
2|1(b2 | b1, z, I), which I haven’t constructed yet. A plug-in estimator of Gl

2|1(b2 |
b1, z, I) uses (18).

Ĝl
2|1 (b2 | b1, z, I) = Ĝl

2 (b2 | B1 ≤ b1, z, I) +
Ĝ1 (b1 | z, I)
ĝ1 (b1 | z, I)

∂Ĝl
2 (b2 | B1 ≤ b1, z, I)

∂b1
.

From 4.1-4.2 I know the right-hand side except ∂Ĝl
2(b2 | B1 ≤ b1, z, I)/∂b1, which is,

∂Ĝl
2 (b2 | B1 ≤ b1, z, I)

∂b1
=

Ĝl
2 (b2 | B1 ≤ b1, z, I)

h2(I − 1)

∫ b2

b2

∑
{ℓ∈LI :W1ℓ ̸=W2ℓ} λℓ(b1)K

(
b−Bmax

2ℓ

h2

)(∑
ℓ∈LI

∂λℓ(b1)
∂b1

K2ℓ(b)
)

(
∑

ℓ∈LI
λℓ(b1)K2ℓ(b))2

db

− Ĝl
2 (b2 | B1 ≤ b1, z, I)

h2(I − 1)

∫ b2

b2

∑
{ℓ∈LI :W1ℓ ̸=W2ℓ}

∂λℓ(b1)
∂b1

K
(

b−Bmax
2ℓ

h2

)
∑

ℓ∈LI
λℓ(b1)K2ℓ(b)

db,

where ∂λℓ(b1)/∂b1 is as follows; k(·) is the derivative of K(·).

∂λℓ(b1)

∂b1
=

λℓ(b1)

h1

 k
(

b1−Bmax
1ℓ

h1

)
K
(

b1−Bmax
1ℓ

h1

) −

∑
ℓ∈LI

k
(

b1−Bmax
1ℓ

h1

)
K
(

z−Zℓ

hz

)
∑

ℓ∈LI
K
(

b1−Bmax
1ℓ

h1

)
K
(

z−Zℓ

hz

)
 .

I already know the estimators that constitute the right-hand side of ∂Ĝl
2 (b2 | B1 ≤ b1, z, I) /∂b1.

4.4 Estimation of δ̃(·, ·; z)

The identification strategy used in 3.1.4 applies here; I have a plug-in estimator of (20).

ˆ̃
δ (b1, v2(α|b1, z, I); z, I) = ˆ̃D−1

(
ˆ̃F2|1
(
v̂2(α|b1, z, I)

∣∣b1, z, I) ∣∣∣ b1, z, I) , (34)

where I use ˆ̃F2|1(· | b1, z, I) and ˆ̃D(· | b1, z, I) from 4.3, and v̂2(α|b1, z, I) represents the α-

quantile of ˆ̃F2|1(· | b1, z, I). By varying α ∈ [0, 1] in (34) I obtain
ˆ̃
δ (b1, ·; z, I). Let LI be the

number of auction pairs with I bidders, and then I define a new estimator (35) from (34).

ˆ̃
δ(b1, ·; z) ≡ (

N∑
Ĩ=2

LĨ)
−1

N∑
I=2

LI
ˆ̃
δ(b1, ·; z, I), (35)

where I assumed that the maximum number of bidders possible is N . (35) weights
ˆ̃
δ (b1, ·; z, I)

by LI , which implies that I need to have prior knowledge of
ˆ̃
δ (b1, ·; z, I) for every I ∈ {2, . . . , N}.
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4.5 Estimation of F1(· | z, I), F2|1(· | ·, z, I) and δ(·, ·; z)

A plug-in estimator of F1(· | z, I) or (21) is,

F̂1(v1 | z, I) =
∫ b1

b1

1
(
ξ̂1(b1; z, I) ≤ v1

)
dĜ1(b1 | z, I),

where v1 ∈ [ξ̂1(b1; z, I), ξ̂1(b1; z, I)]. I know dĜ1(b1 | z, I) = ĝ1(b1 | z, I)db1 from 4.2, but haven’t

constructed ξ̂1(b1; z, I) yet. A plug-in estimator of ξ1(b1; z, I) or (10) is as follows; to maintain

brevity I will omit writing (Z = z, I = I) as much as possible in 4.5.

ξ̂1 (b1) ≡b1 +
1

I − 1

Ĝ1 (b1)

ĝ1 (b1)

−
∫ b2

b2

[
Ĥw

2 (b2; b1)

ĥw2 (b2; b1)
Ĝl

2 (b2 | B1 ≤ b1)
I−2 Ĝl

2|1 (b2 | b1)

]
dĜw

2|1(b2|b1)

+

∫ b2

b2

[
Ĥ l

2 (b2; b1)

ĥl2 (b2; b1)
Ĝl

2 (b2 | B1 ≤ b1)
I−2 Ĝw

2|1 (b2 | b1)

]
dĜl

2|1(b2|b1).

I know all the estimators on the right-hand side from 4.1-4.4 except dĜl
2|1(b2 | b1) = ĝl2|1(b2 |

b1)db2. Since Ĝl
2|1(b2 | b1) is given in 4.3, I differentiate the estimator with respect to b2 to

obtain ĝl2|1(b2 | b1).

ĝl2|1(b2 | b1) =
d

db2
Ĝl

2|1(b2 | b1)

= ĝl2 (b2 | B1 ≤ b1) +
Ĝ1 (b1)

ĝ1 (b1)

∂ĝl2 (b2 | B1 ≤ b1)

∂b1

=
1

I − 1

m̂l
2 (b2 | b1)

ĜBmax
2 |Bmax

1
(b2 | b1)

Ĝl
2 (b2 | B1 ≤ b1)

+
1

I − 1

Ĝ1 (b1)

ĝ1 (b1)

∂

∂b1

(
m̂l

2 (b2 | b1)
ĜBmax

2 |Bmax
1

(b2 | b1)

)
Ĝl

2 (b2 | B1 ≤ b1)

+
1

I − 1

Ĝ1 (b1)

ĝ1 (b1)

m̂l
2 (b2 | b1)

ĜBmax
2 |Bmax

1
(b2 | b1)

∂Ĝl
2 (b2 | B1 ≤ b1)

∂b1
.

All the estimators that form ĝl2|1(b2 | b1) are known from 4.1-4.4 except ∂
∂b1

(
m̂l

2(b2|b1)
ĜBmax

2 |Bmax
1

(b2|b1)
).

Since I know m̂l
2(b2 | b1) and ĜBmax

2 |Bmax
1

(b2 | b1) from (26) and (27) I have the following.

∂

∂b1

(
m̂l

2 (b2 | b1)
ĜBmax

2 |Bmax
1

(b2 | b1)

)
=

∑
{ℓ∈LI :W1ℓ ̸=W2ℓ}

∂λℓ(b1)
∂b1

1
h2
K

(
b2−Bmax

2ℓ
h2

)
∑

ℓ∈LI
λℓ(b1)K2ℓ(b2)

−

∑
{ℓ∈LI :W1ℓ ̸=W2ℓ} λℓ(b1)

1
h2
K

(
b2−Bmax

2ℓ
h2

)∑
ℓ∈LI

∂λℓ(b1)
∂b1

K2ℓ(b2)(∑
ℓ∈LI

λℓ(b1)K2ℓ(b2)
)2 ,
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where I know ∂λℓ(b1)/∂b1 from 4.3. It implies that I have constructed F̂1(v1 | z, I), as all the

estimators comprising ξ̂1(b1; z, I) are known and Ĝ1(b1 | z, I) is known from 4.2.

To construct the estimator of F2|1(· | v1, z, I), I use the following equality modified from

(22) in 3.1.5.

ˆ̃F2|1(· | b1, z, I) ≡ P̂r[V2 ≤ · | B1 = b1, z, I] = P̂r[V2 ≤ · | ξ1(B1; z, I) = ξ1(b1; z, I), z, I]

= P̂r[V2 ≤ · | V1 = v1, z, I] ≡ F̂2|1(· | v1︸︷︷︸
=ξ1(b1)

, z, I).

It implies that ˆ̃F2|1(· | b1, z, I), which I know from 4.3, is equivalent to F̂2|1(· | v1, z, I) given

the increasing property of ξ1(·; z, I). Since ξ̂1(b1; z, I) is a consistent estimator of ξ1(b1; z, I),

it follows that ˆ̃F2|1(· | ξ̂1(b1; z, I), z, I) = F̂2|1(· | v̂1, z, I) is a consistent estimator of F̂2|1(· |
v1, z, I), which is also a consistent estimator of F2|1(· | v1, z, I). I can conclude that ˆ̃F2|1(· |
ξ̂1(b1; z, I), z, I) is a consistent estimator of F2|1(· | v1, z, I).

To construct the estimator of δ(v1, ·; z) I use
ˆ̃
δ(b1, ·; z, I) from (34). I combine

ˆ̃
δ(b1, ·; z, I)

with the equivalence established in Appendix A.7,

ˆ̃
δ (b1, ·; z, I) = ˆ̃

δ (s1 (v1; z, I) , ·; z, I) = ˆ̃
δ
(
ξ−1
1 (v1; z, I) , ·; z, I

)
= δ̂( v1︸︷︷︸

=ξ1(b1)

, ·; z, I).

The second equality holds by the relationship ξ1(b1; z, I) = s−1
1 (b1; z, I) ⇔ ξ−1

1 (v1; z, I) =

s1(v1; z, I), as established in Theorem 3. Since ξ̂1(b1; z, I) = v̂1 is a consistent estimator

of ξ1(b1; z, I) = v1, it follows that
ˆ̃
δ
(
ξ̂1 (b1; z, I) , ·; z, I

)
= δ̂ (v̂1, ·; z, I) is a consistent es-

timator of δ̂ (v1, ·; z, I), which is also a consistent estimator of δ(v1, ·; z, I). I can conclude

that
ˆ̃
δ
(
ξ̂1 (b1; z, I) , ·; z, I

)
, which I have constructed in 4.4-4.5, is a consistent estimator of

δ(v1, ·; z, I). Using the idea from (35) and
ˆ̃
δ
(
ξ̂1 (b1; z, I) , ·; z, I

)
, I define a new estimator of

δ(v1, ·; z) as follows,

δ̂(v1, ·; z) ≡ (
N∑
Ĩ=2

LĨ)
−1

N∑
I=2

LI
ˆ̃
δ
(
ξ̂1 (b1; z, I) , ·; z, I

)
.

The new estimator δ̂(v1, ·; z) is computed as a weighted average of
ˆ̃
δ
(
ξ̂1 (b1; z, I) , ·; z, I

)
. It

implies that to construct δ̂(v1, ·; z), I need to have prior knowledge of both
ˆ̃
δ (b1, ·; z, I) and

ξ̂1 (b1; z, I) for every I ∈ {2, . . . , N}.

5 Monte Carlo Simulation

I evaluate the performance of our multi-step estimator by testing it on bid distributions that

satisfy the assumptions in Theorem 3: they must be absolutely continuous, and [(2), (6), (10)]

must be increasing and differentiable with respect to [bw2 for any b1, b
l
2 for any b1, b1] — the
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following triplet satisfies the assumptions.

Gw
2|1(b2 | b1) = b2b12 , (36)

Gl
2|1(b2 | b1) = bb12 , (37)

G1(b1) = b1, (38)

where the supports are b1 ∈ [0, 1] ≡ [b1, b1] and b2 ∈ [0, 1] ≡ [b2, b2]. Within the support

Gw
2|1(· | b1) first-order dominates Gl

2|1(· | b1) for any given b1, indicating that in the second

auction the winner of the first auction likely bids higher than the loser of the first auction.

I assume a setting with three bidders(I = 3) and no auction-specific covariates, Z. Given

the triplet each bidder draws their first auction bid from G1(·) and if a bidder i wins(resp.,

loses) he draws his second auction bid from Gw
2|1(· | b1i)(resp., G

l
2|1(· | b1i)). It generates a

single auction pair, indexed by ℓ, which consists of (Bmax
1ℓ ,W1ℓ, B

max
2ℓ ,W2ℓ, Iℓ = 3). Repeat the

process 500 times resulting in a total of L = 500 auction pairs, i.e., ℓ ∈ {1, . . . , 500}. I observe
that the winner of the first auction also wins the second auction in approximately 70% − 75%

of the cases.

I define the sample as {(Bmax
1ℓ ,W1ℓ, B

max
2ℓ ,W2ℓ, Iℓ = 3) : ℓ = 1, . . . , 500}, and I create a total

of 200 samples. Each sample yields a vector of estimates,
(
Ĝw

2|1(· | ·), . . . , δ̂(·, ·)
)
, as described

in 4.1-4.5, so our 200 samples produce a total of 200 vectors of estimates. In its production, I

chose the Gaussian function and Silverman’s rule of thumb for kernel and bandwidths selection;

to enhance computational speed in Python, I employ Numba and Multiprocessing.

Figure 2: The solid line represents the true D̃(d | 0.3) from (16), with d varying between
[ξw2 (0.3, b2 = 0), ξw2 (0.3, b2 = 1)] = [0, 4.29]. The dash-dotted line represents the true F̃2|1(v2 |
0.3) from (19), with v2 varying between [ξl2(0.3, b2 = 0), ξl2(0.3, b2 = 1)] = [0, 1.55]. The dashed
line and the dotted lines correspond to the (pointwise) 50% percentile and 80% confidence

interval of 200 estimates, ˆ̃D(· | 0.3) and ˆ̃F2|1(· | 0.3).

Set the first auction bid at b1 = 0.3, and Figure 2 compares the estimates ˆ̃D(d | 0.3) and
ˆ̃F2|1(v2 | 0.3), indicating that I am at stage 4.3 in 4.1-4.5. Both estimators are evaluated at

40 equally spaced points on [ξw2 (0.3, b2), ξ
w
2 (0.3, b2)] = [0, 4.29] and [ξl2(0.3, b2), ξ

l
2(0.3, b2)] =

[0, 1.55]. With a sample size of two hundred each grid point contains two hundred estimates,
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allowing us to construct pointwise 50% percentile(dashed) and 80% confidence interval(dotted).

The dashed lines closely track the true lines(solid, dash-dotted) derived from (36)-(38).

Figure 3: The solid line represents the true D̃(d | 0.5) from (16), with d varying between
[ξw2 (0.5, b2 = 0), ξw2 (0.5, b2 = 1)] = [0, 2.97]. The dash-dotted line represents the true F̃2|1(v2 |
0.5) from (19), with v2 varying between [ξl2(0.5, b2 = 0), ξl2(0.5, b2 = 1)] = [0, 1.50]. The dashed
line and the dotted lines correspond to the (pointwise) 50% percentile and 80% confidence

interval of 200 estimates, ˆ̃D(· | 0.5) and ˆ̃F2|1(· | 0.5).

Figure 3 provides a comparison to Figure 2, with the only difference being an increase in

the first auction bid from 0.3 to 0.5. The increase in b1 leads to a reduction in the domains of

v2 and d. It implies that if the three auction bids were [b1i = 0.5, b1j = 0.3, b1k = 0.3] in a given

ℓ-th auction pair, the maximum possible value of the second object for bidder i is 2.97 while

for bidders {j, k} it is 1.55. Figures 4 and 5 depict the estimated strategies for i and {j, k}.
It is unclear why a bidder who placed a higher bid in the first auction(0.3 → 0.5) perceives the

second object v2 as less valuable(1.55 → 1.50). I suspect that the phenomenon occurs because

our model assumes that no bidders drop out within an auction pair, and the triplet (36)-(38)

satisfy the assumption (Assumption 1); never dropping out is demonstrated as a first auction

loser favoring the second object more(1.50 → 1.55) as their first auction bid decreases(0.5 →
0.3).
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Figure 4: The X-axis represents d ∈ [ξw2 (0.5, b2 = 0), ξw2 (0.5, b2 = 1)] = [0, 2.97], where d ≡
δ̃(0.5, V2) defined in 3.1.3. The Y-axis represents bw2 ∈ [b2 = 0, b2 = 1]. The plot illustrates
the second auction equilibrium strategy for a first auction winner with an initial bid of 0.5.
Let v1 = ξ−1

1 (0.5), then the solid line represents the true sw2 (v1, V2) ≡ sw2 (v1, δ̃(0.5, V2)) =
(ξw2 )

−1(δ̃(0.5, V2); v1) defined in Theorem 3. The dashed and the dotted lines correspond to the
(pointwise) 50% percentile and 80% confidence interval of 200 estimates, ŝw2 (v1, V2).

Figure 5: The X-axis and Y-axis represent v2 ∈ [ξl2(0.3, b2 = 0), ξl2(0.3, b2 = 1)] = [0, 1.55] and

bl2 ∈ [b2 = 0, b2 = 1]. The plot illustrates the second auction equilibrium strategy for a first
auction loser with an initial bid of 0.3. Let v1 = ξ−1

1 (0.3), then the solid line represents the true
sl2(v1, V2) = (ξl2)

−1(V2; v1) defined in Theorem 3. The dashed and the dotted lines correspond
to the (pointwise) 50% percentile and 80% confidence interval of 200 estimates, ŝl2(v1, V2).

Figures 4 and 5 depict equilibrium strategies defined in Theorem 3, comparable to Figure

1 in Guerre et al. (2000). Theorem 3 establishes that the quasi-inverse bidding strategies for i

and {j, k} correspond to ξw2 (0.5, b
w
2 ) from (2) and ξl2(0.3, b

l
2) from (6). Using the inverse bidding

strategies the figures are generated by evaluating both ξ̂w2 (0.5, b
w
2 ) and ξ̂l2(0.3, b

l
2) at 30 equally

spaced points on the Y-axis, [b2, b2] = [0, 1].

It is unclear why the confidence interval for ξ̂w2 (0.5, b
w
2 ) in Figure 4 is larger than that for

ξ̂l2(0.3, b
l
2) in Figure 5; I suspect that the phenomenon happens because of the triplet used in

our simulation, (36)-(38). I observed that the winner of the first auction also wins the second

auction in approximately 70% − 75% of the cases. Since I am in Case 1(3.1), it implies that

25



the 70% − 75% and 25% − 30% of auction pairs correspond to {ℓ ∈ LI=3 : W1ℓ = W2ℓ} and

{ℓ ∈ LI=3 : W1ℓ ̸= W2ℓ}, which together constitute the entire set {ℓ ∈ LI}. Among the three

sets the following equations show that ξ̂w2 (0.5, b
w
2 ) never utilizes {ℓ ∈ LI=3 : W1ℓ = W2ℓ}, while

ξ̂l2(0.3, b
l
2) incorporates information from all three sets.

ξ̂w2 (0.5, b
w
2 ) ≡ bw2 +

ĜBmax
2 |Bmax

1
(bw2 | 0.5)

m̂l
2 (b

w
2 | 0.5)

,

ξ̂l2(0.3, b
l
2) ≡ bl2 +

∫ 1
0.3 Ĝ

l
2

(
bl2 | B1 ≤ x

)3−2
Ĝw

2|1(b
l
2 | x)dĜ1(x)

3−1∫ 1
0.3 Ψ̂(bl2;x)Ĝ

l
2

(
bl2 | B1 ≤ x

)3−2
Ĝw

2|1(b
l
2 | x)dĜ1(x)3−1

,

where the equations come from (29) and (32), where I discarded the conditions (Z = z, I = I). I

suspect that the difference in the amount of information utilized by the two estimators accounts

for the disparity in confidence intervals.

Lastly, the estimate of a synergy function is depicted in Figure 6.

Figure 6: The X-axis and Y-axis represent v2 ∈ [ξl2(0.5, b2 = 0), ξl2(0.5, b2 = 1)] = [0, 1.50] and

d varying between [ξw2 (0.5, b2 = 0), ξw2 (0.5, b2 = 1)] = [0, 2.97]. The plot illustrates a function

δ̃(b1 = 0.5, v2).

I see that the setting of this Monte Carlo Simulation implies the case of positive synergy;

moreover, since δ̃(b1, v2) = δ(ξ1(b1), v2) holds, the figure above shows the graph of a function δ

where v1 is fixed at ξ1(0.5).

6 Conclusion

I examined two-period first-price sealed-bid auction, where the auctioneer only discloses the

winner’s identity between the two auctions. Given the setting, I constructed the bidders’ profit

functions using the unobserved value as the dependent variable and the observed bids as ex-

planatory variables. The approach, along with the distribution of V2 being influenced by v1,

separates synergy and affiliation in our model. Based on the separation, I demonstrated that

the analyst could identify synergy and affiliation separately even with limited observations, i.e.,

access to only maximum bids and winner’s identities. Multi-step estimator followed the identi-
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fication steps, enabling the analyst to estimate the degree of synergy and the level of affiliation

between V2 and V1. I validated the performance of our estimator through Monte Carlo simula-

tions, showing its reliability; our modeling approach allowed us to avoid computational burdens,

leading us to test the estimator.

Throughout the paper I have assumed that the auctioneer only discloses the identity of

the winner to the bidders after the first auction or at step(ii). He may provide additional

information, such as the winning bid or all the bids, as discussed in Bergemann and Hörner

(2018). The result of their paper is not applicable to our model for various reasons, such as

the difference in equilibrium strategies. I plan to examine the case where the auctioneer dis-

closes both the winning bid and the winner’s identity after the first auction. Papers exist which

examine the impact of more information disclosure on various aspects, such as pooling behav-

ior(Bergemann and Hörner (2018)), allocative efficiency or the expected revenue(Dufwenberg

and Gneezy (2002), Kannan (2012), Azacis (2020)). I plan to contribute to the topic in our

future research.
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Appendices

A Proofs and Detail

A.1 Assumption 5

Detail: I relate steps(0)-(iii) to Assumption 5. Without loss of generality, let Iℓ = 2 where the

set of bidders is {i, j}.
Step(i) implies that each i and j separately draws v1i and v1j from one of the model primi-

tives, F1(·). So, step(i) is related to V1i, V1j being independent and identically distributed from

F1(·) in Assumption 5.

Given that v1i and v1j are fixed at step(i), step(iii) implies that each i and j separately

draws v2i and v2j from the model primitive, F2|1(·|v1i) and F2|1(·|v1j). This implies the following
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equality.

Pr[V1i = v1i, V2i = v2i|V1j = v1j , V2j = v2j ] =
Pr[v1i, v2i, v2j |v1j ]

Pr[v2j |v1j ]
(39)

=
Pr[v1i, v2i|v1j ] Pr[v2j |v1j ]

Pr[v2j |v1j ]

= Pr[V1i = v1i, V2i = v2i].

The second equality holds by (V1i, V2i) ⊥ V2j |V1j ; the conditional independence holds because

the steps(i) and (iii) jointly imply V2i ⊥ V2j |V1j and V1i ⊥ V2j |V1j . The last equality holds by

(V1i, V2i) ⊥ V1j . (39) is equivalent to the following equation.

f(v1i, v2i, v1j , v2j) = f(v1i, v2i)f(v1j , v2j). (40)

As a result, the pairs (V1i, V2i) and (V1j , V2j) are independent with the joint density shown in

the left-hand side of (40).

A.2 Remark 1

Detail: Assumption 5 implies that (s1(V1j), j = 1, . . . , Iℓ) are independent and identically dis-

tributed from Pr[s1(V1) ≤ ·]. But, the second auction bids are not necessarily independent;

without loss of generality, let Iℓ = 2 where the set of bidders is {i, j}. Then, in equilibrium, any

second auction bid can be expressed as follows.

B2i = sw2 (V1i, V2i)1(W1 = i) + sl2(V1i, V2i)1(W1 ̸= i) (41)

= sw2 (V1i, V2i)1(V1i ≥ V1j) + sl2(V1i, V2i)(1− 1(V1i ≥ V1j)),

B2j = sw2 (V1j , V2j)(1− 1(V1i ≥ V1j)) + sl2(V1j , V2j)1(V1i ≥ V1j). (42)

W1 records the index of the winner in the first auction. The last equality of (41) holds because

Theorem 3 asserts that s1(·) is an increasing strategy. Given (41) and (42), I want to show

Pr[B2i = b2i|B2j = b2j ] = Pr[B2i = b2i], which is equivalent to proving the following.

Pr
(
Function of (V1i, V2i, V1j)

∣∣ Function of (V1j , V2j , V1i)
)

(43)

= Pr (Function of (V1i, V2i, V1j)) .

Equality does not necessarily hold because Assumption 5 pertains to the independence of the

pairs (V1i, V2i) and (V1j , V2j), rather than the pairs (V1i, V2i, V1j) and (V1j , V2j , V1i). Conse-

quently, the second auction bids are not guaranteed to be independent; intuitively, the occur-

rence of the event 1(W1 = i) introduces correlation among bidders {i, j}.

A.3 Lemma 1

Proof of Lemma 1. Recall that a bidder i is the first auction winner without loss of generality.

First, I show that {V2i} and {V1j , V2j}, j ̸= i are Iℓ independent sets of random variables given
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{V max
1,−i ≤ V1i = v1i}, which is equivalent to proving the following equation.

f
(
v11, v21, . . . , v2i, . . . , v1Iℓ , v2Iℓ |V

max
1,−i ≤ V1i = v1i

)
(44)

= f(v2i|V max
1,−i ≤ V1i = v1i)

∏
k ̸=i

f(v1k, v2k|V max
1,−i ≤ V1i = v1i).

I will use the fact that {V max
1,−i ≤ V1i = v1i} and {V1i = v1i, V1k ≤ v1i, k ̸= i} are equivalent.

Then, the left-hand side of (44) is equivalent to the following equation.

Pr ((V1i = v1i, V2i = v2i), (V1k = v1k, V2k = v2k, V1k ≤ v1i, k ̸= i))

Pr[V1i = v1i, V1k ≤ v1i, k ̸= i]
. (45)

By Assumption 5, V1 is independent across bidders, and a pair (V1, V2) is also independent

across bidders. Also, v1i is an arbitrarily chosen value. Thus, (45) equals the following.

Pr[V1i = v1i, V2i = v2i]
∏

k ̸=i Pr[V1k = v1k, V2k = v2k, V1k ≤ v1i]

Pr[V1i = v1i]
∏

k ̸=i Pr[V1k ≤ v1k]
(46)

= f(v2i|v1i)
∏
k ̸=i

f(v1k, v2k|V1k ≤ v1i)

= f(v2i|V1i = v1i, V1k ≤ v1i, k ̸= i)
∏
k ̸=i

f(v1k, v2k|V1i = v1i, V1j ≤ v1i, j ̸= i)

= f(v2i|V max
1,−i ≤ V1i = v1i)

∏
k ̸=i

f(v1k, v2k|V max
1,−i ≤ V1i = v1i).

The second equality of (46) holds by the following two equations (47) and (48) — they use

the independence property from Assumption 5. An arbitrary bidder k in (48) comes from

k ∈ {1, . . . , Iℓ}/{i}

f(v2i|V1i = v1i, V1k ≤ v1i, k ̸= i) (47)

=
Pr ((V1i = v1i, V2i = v2i), V1k ≤ v1i, k ̸= i)

Pr[V1i = v1i, V1k ≤ v1i, k ̸= i]
=

f(v1i, v2i)
∏

k ̸=i F1(v1i)

f(v1i)
∏

k ̸=i F1(v1i)
= f(v2i|v1i),

f(v1k, v2k|V1i = v1i, V1j ≤ v1i, j ̸= i) (48)

=
Pr[(V1k = v1k, V2k = v2k, V1k ≤ v1i), V1i = v1i, V1j ≤ v1i, j ̸= {i, k}]

Pr[V1i = v1i, V1j ≤ v1i, j ̸= i]

=
Pr[V1k = v1k, V2k = v2k, V1k ≤ v1i]f(v1i)

∏
j ̸={i,k} F1(v1i)

f(v1i)
∏

j ̸=i F1(v1i)
= f(v1k, v2k|V1k ≤ v1i).

As (46) is the left-hand side of (44), I proved that the (44) is true.

Second, I transform (44) into the second auction bids. In equilibrium, the second auction

bids for j ∈ {1, . . . , Iℓ} will satisfy the following.

B2j = sw2 (V1j , V2j)1(B
max
1,−j ≤ B1j) + sl2(V1j , V2j)1(B

max
1,−j > B1j) (49)

= sw2 (V1j , V2j)1(V
max
1,−j ≤ V1j) + sl2(V1j , V2j)1(V

max
1,−j > V1j),

where the last equality holds because s1(·) is an increasing function by Theorem 3. Then, the

second auction equilibrium bid for each j ∈ {1, . . . , Iℓ}/{i} and i, given {V max
1,−i = V1i ≤ v1i}, is
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as follows.

B2i = sw2 (v1i, V2i),

B2j = sl2(V1j , V2j).

Now, note the three following facts where (a) by Theorem 3, sw2 (·, ·), sl2(·, ·) are measurable

functions; (b) If X,Y1 . . . , Yn are mutually independent, then so are g(X), h(Y1), . . . , h(Yn)

mutually independent, where g(·) and h(·) are measurable functions; and (c) v1i is a fixed

nonstochastic number. Given (a), (b), and (c), think of X and Y1, . . . , Yn in (b) as V2i and

(V1j , V2j), j ̸= i, and also consider g(·) and h(·) as sw2 (v1i, ·) and sl2(·, ·). Then, (44) equals the

following.

Pr[B21 = b21, . . . , B2i = b2i, . . . , B2Iℓ = b2Iℓ |V
max
1,−i ≤ V1i = v1i] (50)

= Pr[B2i = b2i|V max
1,−i ≤ V1i = v1i]

∏
j ̸=i

Pr[B2j = b2j |V max
1,−i ≤ V1i = v1i].

Note that the conditioning event {V max
1,−i ≤ V1i = v1i} in the left-hand side of the equation is the

same as the event {Bmax
1,−i ≤ B1i = b1i} since s1(·) is increasing. Also, the right-hand side of the

equation is the same as follows.

Pr[B2i = b2i|V max
1,−i ≤ V1i = v1i]

∏
j ̸=i

Pr[B2j = b2j |V max
1,−i ≤ V1i = v1i]

= Pr[Bw
2i = b2i|V1i = v1i]

∏
j ̸=i

Pr[Bl
2j = b2j |V1j ≤ v1i]

= Pr[Bw
2i = b2i|B1i = b1i]

∏
j ̸=i

Pr[Bl
2j = b2j |B1j ≤ b1i],

where the first equality holds by (47) and (48) and the fact that i is the winner(B2i = Bw
2i)

and j ̸= i are losers(B2j = Bl
2j). The second equality holds by the increasing s1(·). Thus, (50)

equals the following.

Pr[B21 = b21, . . . , B2i = b2i, . . . , B2Iℓ = b2Iℓ |B
max
1,−i ≤ B1i = b1i] (51)

= Pr[Bw
2i = b2i|B1i = b1i]

∏
j ̸=i

Pr[Bl
2j = b2j |B1j ≤ b1i].

As a result, I showed that (B2i, B2j , j ̸= i) are independent given {Bmax
1,−i ≤ B1i = b1i}, and the

distribution of B2i given {Bmax
1,−i ≤ B1i = b1i} is Gw

2|1(·|b1i), whereas for j ̸= i, the distribution

of B2j given {Bmax
1,−i ≤ B1i = b1i} is Gl

2(·|B1 ≤ b1i).

A.4 Comprehensive derivations of (4) and (8)

Since Vw(v1i, b1i) is (3) I differentiate π̃w
2 (v1i, v2i, b1i) with respect to b1i.

∂π̃w
2 (v1i, v2i, b1i)

∂b1i
=

∂πw
2

(
v1i, v2i, b1i, b̃

w
2i

)
∂b1i

=
Hw

2

(
b̃w2i; b1i

)
hw2

(
b̃w2i; b1i

) ∂Hw
2

(
b̃w2i; b1i

)
∂b1i

,
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where the Envelope Theorem is used. From (1) I know the partial derivative of Hw
2 (·; b1i) with

respect to b1i,

∂Hw
2 (·; b1i)
∂b1i

=
dG1 (b1i)

I−1 /db1i

G1 (b1i)
I−1

[
Gl

2 (· | B1 ≤ b1i)
I−2Gl

2|1 (· | b1i)−Hw
2 (·; b1i)

]
.

Using ∂π̃w
2 (v1i, v2i, b1i) /∂b1i the partial derivative of (3) with respect to b1i yields (4).

∂Vw (v1i, b1i)

∂b1i
=

dG1 (b1i)
I−1 /db1i

G1 (b1i)
I−1

×

EV2|V1

[
Hw

2 (B̃
w
2i; b1i)

hw2 (B̃
w
2i; b1i)

[
Gl

2(B̃
w
2i | B1 ≤ b1i)

I−2Gl
2|1(B̃

w
2i | b1i)−Hw

2 (B̃
w
2i; b1i)

]
| v1i

]
.

Since V l(v1i, b1i) is (7) I differentiate π̃l
2(v2i, b1i) with respect to b1i.

∂π̃l
2 (v2i, b1i)

∂b1i
=

∂πl
2

(
v2i, b1i, b̃

l
2i

)
∂b1i

=
H l

2

(
b̃l2i; b1i

)
hl2

(
b̃l2i; b1i

) ∂H l
2

(
b̃l2i; b1i

)
∂b1i

,

where the Envelope theorem is used. From (5) I know the partial derivative of H l
2(·; b1i) with

respect to b1i,

∂H l
2 (·; b1i)
∂b1i

=
dG1 (b1i)

I−1 /db1i

1−G1 (b1i)
I−1

[
H l

2 (·; b1i)−Gl
2 (· | B1 ≤ b1i)

I−2Gw
2|1 (· | b1i)

]
.

Using ∂π̃l
2(v2i, b1i)/∂b1i the partial derivative of (7) with respect to b1i yields (8).

∂V l (v1i, b1i)

∂b1i
=

dG1 (b1i)
I−1 /db1i

1−G1 (b1i)
I−1

×

EV2|V1

[
H l

2(B̃
l
2i; b1i)

hl2(B̃
l
2i; b1i)

[
H l

2(B̃
l
2i; b1i)−Gl

2(B̃
l
2i | B1 ≤ b1i)

I−2Gw
2|1(B̃

l
2i | b1i)

]
| v1i

]
.

A.5 Alternative derivation of Hw
2 (·; b1i)

An alternative derivation of (1) relies on noting that the distribution of Bmax
2,−i in the second

auction given
{
Bmax

1,−i = x, V1i = v1i, V2i = v2i

}
for b1 ≤ x ≤ b1i is Gl

2 (· | B1 ≤ x)I−2Gl
2|1(· | x)

following Kong (2021). Using the fact, the distribution of Bmax
2,−i given {Bmax

1,−i ≤ b1i, V1i =

v1i, V2i = v2i} is

Hw
2 (·; b1i) =

1

G1 (b1i)
I−1

∫ b1i

b1

Gl
2 (· | B1 ≤ x)I−2Gl

2|1(· | x)dG1(x)
I−1.

Hence, (1) is obtained by noting that the integrand is d
dx

[∫ x
b1
Gl

2|1(· | u)dG1(u)
]I−1

.
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A.6 Lemma 4

From Remarks 7.3.1 in Rao (1992), I know that the ‘identified maximum’ vector (Z, J), where

Z ≡ max {X1, . . . , Xk} and XJ = Z, identifies the distributions F1(·), . . . , Fk(·) of X1, . . . , Xk

when X1 through Xk are mutually independent random variables with continuous distribution

functions. Following the proof of Theorem 7.3.1 in Rao (1992), the next Lemma gives an explicit

expression for Fj(·), j ∈ {1, . . . , k}.

Lemma 4 Let X1, . . . , Xk be mutually independent random variables with continuous distribu-

tion functions F1(·), . . . , Fk(. . . ). Define Z ≡ max{X1, . . . , Xk} and let J be the index such that

XJ = Z, representing the random variable that achieves the maximum value. Given the vector

(Z, J) the distributions F1(·), . . . , Fk(·) are identified, where I have

Fj(x) = exp

−
∫ +∞

x

[
k∑

i=1

Hi(t)

]−1

dHj(t)

 (52)

= exp

{
−
∫ +∞

x
(Pr[Z ≤ t])−1dHj(t)

}
,

where Hj(x) ≡ Pr[Z ≤ x, J = j] for j = 1, . . . , k.

Proof of Lemma 4. Since Hj(x) = Pr [Xj is the maximum among X1, . . . , Xk, and Xj ≤ x],

I have

Hj(x) =

∫ x

−∞

∏
i ̸=j

Fi(t)dFj(t) =

∫ x

−∞

∏k
i=1 Fi(t)

Fj(t)
dFj(t) =

∫ x

−∞

k∏
i=1

Fi(t)d logFj(t).

But,
∑k

i=1Hi(t) =
∑k

i=1 Pr[Z ≤ t, J = i] = Pr[Z ≤ t] =
∏k

i=1 Fi(t). Thus,

Hj(x) =

∫ x

−∞

k∑
i=1

Hi(t)d logFj(t).

Differentiating with respect to x gives

d logFj(x) =

[
k∑

i=1

Hi(x)

]−1

dHj(x).

Integrating from x to +∞ and noting that logFj(+∞) = 1 gives

− logFj(x) =

∫ +∞

x

[
k∑

i=1

Hi(t)

]−1

dHj(t),

which gives (52) since
∑k

i=1Hi(t) = Pr[Z ≤ t].

A.7 Equivalence of δ̃(B1, V2) and δ(V1, V2)

Choose an arbitrary value v1 from the interval [V1, V1], which fixes the domain of V2 to [V2, V2].

The specific range [V2, V2] may vary depending on the chosen v1. Based on the definition of a
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function from Epp (2010), δ(V1 = v1, ·) implies two properties: (a) every element in [V2, V2] is

associated with an element in R+, and (b) no element in [V2, V2] is associated with more than

one element in R+. By Theorem 3, the function s1(·) is increasing, guaranteeing the existence

of a unique b1 such that s1(v1) = b1. Given b1, the relation between [V2, V2] and R+ remains

unchanged. Therefore, I can define a new function δ̃(s1(V1) = b1, ·) : [V2, V2] → R+, which

is equivalent to δ(V1 = v1, ·) : [V2, V2] → R+. Since v1 was arbitrarily chosen, I can vary v1.

Moreover, because of the increasing nature of s1(·), distinct values of v1 yield different b1. As a

result, I establish the equivalence δ(V1, V2) = δ̃(s1(V1), V2) ≡ δ̃(B1, V2).
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